Abstract
One of the main characteristics of cancer is the rapid proliferation of transformed cells. Cancer therapies aim to kill such cells. Cancer clones surviving therapy can be resistant to the treatment, but they can also lose the ability to proliferate. The ability of single cells to proliferate can be monitored in vitro and can provide insights into the sensitivity of tumor cells to chemotherapeutics. The following chapter describes how clonogenic hematopoietic cell growth can be determined with the colony formation assay.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schiliro C, Firestein BL (2021) Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cell 10(5). https://doi.org/10.3390/cells10051056
Enciso J, Mendoza L, Pelayo R (2015) Normal vs. malignant hematopoiesis: the complexity of acute leukemia through systems biology. Front Genet 6. https://doi.org/10.3389/fgene.2015.00290
Ahmadzadeh A, Khodadi E, Shahjahani M et al (2015) The role of HDACs as leukemia therapy targets using HDI. Int J Hematol Oncol Stem Cell Res 9(4):203–214
Wang P, Wang Z, Liu J (2020) Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 19(1):5. https://doi.org/10.1186/s12943-019-1127-7
Lakshmaiah KC, Jacob LA, Aparna S et al (2014) Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther 10(3):469–478. https://doi.org/10.4103/0973-1482.137937
Nikolova T, Kiweler N, Krämer OH (2017) Interstrand crosslink repair as a target for HDAC inhibition. Trends Pharmacol Sci 38(9):822–836. https://doi.org/10.1016/j.tips.2017.05.009
Krämer OH, Mahboobi S, Sellmer A (2014) Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci 35(10):501–509. https://doi.org/10.1016/j.tips.2014.08.001
Schäfer C, Göder A, Beyer M et al (2017) Class I histone deacetylases regulate p53/NF-kappaB crosstalk in cancer cells. Cell Signal 29:218–225. https://doi.org/10.1016/j.cellsig.2016.11.002
Kiweler N, Wünsch D, Wirth M et al (2020) Histone deacetylase inhibitors dysregulate DNA repair proteins and antagonize metastasis-associated processes. J Cancer Res Clin Oncol 146(2):343–356. https://doi.org/10.1007/s00432-019-03118-4
Göder A, Emmerich C, Nikolova T et al (2018) HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Nat Commun 9(1):764. https://doi.org/10.1038/s41467-018-03096-0
Dovey OM, Foster CT, Cowley SM (2010) Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci U S A 107(18):8242–8247. https://doi.org/10.1073/pnas.1000478107
Shi P, Hoang-Minh LB, Tian J et al (2021) HDAC6 signaling at primary cilia promotes proliferation and restricts differentiation of glioma cells. Cancers (Basel) 13(7). https://doi.org/10.3390/cancers13071644
Müller S, Kramer OH (2010) Inhibitors of HDACs – effective drugs against cancer? Curr Cancer Drug Targets 10(2):210–228. https://doi.org/10.2174/156800910791054149
Cappellacci L, Perinelli DR, Maggi F et al (2020) Recent progress in histone deacetylase inhibitors as anticancer agents. Curr Med Chem 27(15):2449–2493. https://doi.org/10.2174/0929867325666181016163110
Bradner JE, Mak R, Tanguturi SK et al (2010) Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci U S A 107(28):12617–12622. https://doi.org/10.1073/pnas.1006774107
Lee MJ, Kim YS, Kummar S et al (2008) Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol 20(6):639–649. https://doi.org/10.1097/CCO.0b013e3283127095
Puck TT, Morkovin D, Marcus PI et al (1957) Action of x-rays on mammalian cells. II Survival curves of cells from normal human tissues. J Exp Med 106(4):485–500. https://doi.org/10.1084/jem.106.4.485
Franken NA, Rodermond HM, Stap J et al (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339
Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5(3):231–237. https://doi.org/10.1038/nrc1560
Franco SS, Szczesna K, Iliou MS et al (2016) In vitro models of cancer stem cells and clinical applications. BMC Cancer 16(Suppl 2):738. https://doi.org/10.1186/s12885-016-2774-3
Sumantran VN (2011) Cellular chemosensitivity assays: an overview. Methods Mol Biol 731:219–236. https://doi.org/10.1007/978-1-61779-080-5_19
Rafehi H, Orlowski C, Georgiadis GT et al (2011) Clonogenic assay: adherent cells. J Vis Exp 49. https://doi.org/10.3791/2573
Munshi A, Hobbs M, Meyn RE (2005) Clonogenic cell survival assay. Methods Mol Med 110:21–28. https://doi.org/10.1385/1-59259-869-2:021
Kronstein-Wiedemann R, Tonn T (2019) Colony formation: an assay of hematopoietic progenitor cells. Methods Mol Biol 2017:29–40. https://doi.org/10.1007/978-1-4939-9574-5_3
Wognum B, Yuan N, Lai B et al (2013) Colony forming cell assays for human hematopoietic progenitor cells. Methods Mol Biol 946:267–283. https://doi.org/10.1007/978-1-62703-128-8_17
Allieri MA, Douay L, Deloux J et al (1990) The role of methylcellulose on colony growth of human myeloid leukemic progenitors (AML-CFU). Exp Hematol 18(8):911–915
Sarma NJ, Takeda A, Yaseen NR (2010) Colony forming cell (CFC) assay for human hematopoietic cells. J Vis Exp 46. https://doi.org/10.3791/2195
Acknowledgments
We gratefully acknowledge that MB is funded by the German Research Foundation/Deutsche Forschungsgemeinschaft (DFG) KR2291/9-1, project number 427404172, and intramural funding. We further thank the Brigitte and Dr. Konstanze Wegener-Stiftung (Projekt 65) for funding the research of MP.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Pons, M., Beyer, M. (2023). Colony Formation Assay to Test the Impact of HDACi on Leukemic Cells. In: Krämer, O.H. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 2589. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2788-4_2
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2788-4_2
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2787-7
Online ISBN: 978-1-0716-2788-4
eBook Packages: Springer Protocols