Skip to main content

Colony Formation Assay to Test the Impact of HDACi on Leukemic Cells

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2589))

  • 1209 Accesses

Abstract

One of the main characteristics of cancer is the rapid proliferation of transformed cells. Cancer therapies aim to kill such cells. Cancer clones surviving therapy can be resistant to the treatment, but they can also lose the ability to proliferate. The ability of single cells to proliferate can be monitored in vitro and can provide insights into the sensitivity of tumor cells to chemotherapeutics. The following chapter describes how clonogenic hematopoietic cell growth can be determined with the colony formation assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schiliro C, Firestein BL (2021) Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cell 10(5). https://doi.org/10.3390/cells10051056

  2. Enciso J, Mendoza L, Pelayo R (2015) Normal vs. malignant hematopoiesis: the complexity of acute leukemia through systems biology. Front Genet 6. https://doi.org/10.3389/fgene.2015.00290

  3. Ahmadzadeh A, Khodadi E, Shahjahani M et al (2015) The role of HDACs as leukemia therapy targets using HDI. Int J Hematol Oncol Stem Cell Res 9(4):203–214

    PubMed  PubMed Central  Google Scholar 

  4. Wang P, Wang Z, Liu J (2020) Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 19(1):5. https://doi.org/10.1186/s12943-019-1127-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lakshmaiah KC, Jacob LA, Aparna S et al (2014) Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther 10(3):469–478. https://doi.org/10.4103/0973-1482.137937

    Article  CAS  PubMed  Google Scholar 

  6. Nikolova T, Kiweler N, Krämer OH (2017) Interstrand crosslink repair as a target for HDAC inhibition. Trends Pharmacol Sci 38(9):822–836. https://doi.org/10.1016/j.tips.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  7. Krämer OH, Mahboobi S, Sellmer A (2014) Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci 35(10):501–509. https://doi.org/10.1016/j.tips.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  8. Schäfer C, Göder A, Beyer M et al (2017) Class I histone deacetylases regulate p53/NF-kappaB crosstalk in cancer cells. Cell Signal 29:218–225. https://doi.org/10.1016/j.cellsig.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  9. Kiweler N, Wünsch D, Wirth M et al (2020) Histone deacetylase inhibitors dysregulate DNA repair proteins and antagonize metastasis-associated processes. J Cancer Res Clin Oncol 146(2):343–356. https://doi.org/10.1007/s00432-019-03118-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Göder A, Emmerich C, Nikolova T et al (2018) HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Nat Commun 9(1):764. https://doi.org/10.1038/s41467-018-03096-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dovey OM, Foster CT, Cowley SM (2010) Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci U S A 107(18):8242–8247. https://doi.org/10.1073/pnas.1000478107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi P, Hoang-Minh LB, Tian J et al (2021) HDAC6 signaling at primary cilia promotes proliferation and restricts differentiation of glioma cells. Cancers (Basel) 13(7). https://doi.org/10.3390/cancers13071644

  13. Müller S, Kramer OH (2010) Inhibitors of HDACs – effective drugs against cancer? Curr Cancer Drug Targets 10(2):210–228. https://doi.org/10.2174/156800910791054149

    Article  PubMed  Google Scholar 

  14. Cappellacci L, Perinelli DR, Maggi F et al (2020) Recent progress in histone deacetylase inhibitors as anticancer agents. Curr Med Chem 27(15):2449–2493. https://doi.org/10.2174/0929867325666181016163110

    Article  CAS  PubMed  Google Scholar 

  15. Bradner JE, Mak R, Tanguturi SK et al (2010) Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci U S A 107(28):12617–12622. https://doi.org/10.1073/pnas.1006774107

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee MJ, Kim YS, Kummar S et al (2008) Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol 20(6):639–649. https://doi.org/10.1097/CCO.0b013e3283127095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puck TT, Morkovin D, Marcus PI et al (1957) Action of x-rays on mammalian cells. II Survival curves of cells from normal human tissues. J Exp Med 106(4):485–500. https://doi.org/10.1084/jem.106.4.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franken NA, Rodermond HM, Stap J et al (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339

    Article  CAS  PubMed  Google Scholar 

  19. Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5(3):231–237. https://doi.org/10.1038/nrc1560

    Article  PubMed  Google Scholar 

  20. Franco SS, Szczesna K, Iliou MS et al (2016) In vitro models of cancer stem cells and clinical applications. BMC Cancer 16(Suppl 2):738. https://doi.org/10.1186/s12885-016-2774-3

    Article  CAS  Google Scholar 

  21. Sumantran VN (2011) Cellular chemosensitivity assays: an overview. Methods Mol Biol 731:219–236. https://doi.org/10.1007/978-1-61779-080-5_19

    Article  CAS  PubMed  Google Scholar 

  22. Rafehi H, Orlowski C, Georgiadis GT et al (2011) Clonogenic assay: adherent cells. J Vis Exp 49. https://doi.org/10.3791/2573

  23. Munshi A, Hobbs M, Meyn RE (2005) Clonogenic cell survival assay. Methods Mol Med 110:21–28. https://doi.org/10.1385/1-59259-869-2:021

    Article  PubMed  Google Scholar 

  24. Kronstein-Wiedemann R, Tonn T (2019) Colony formation: an assay of hematopoietic progenitor cells. Methods Mol Biol 2017:29–40. https://doi.org/10.1007/978-1-4939-9574-5_3

    Article  CAS  PubMed  Google Scholar 

  25. Wognum B, Yuan N, Lai B et al (2013) Colony forming cell assays for human hematopoietic progenitor cells. Methods Mol Biol 946:267–283. https://doi.org/10.1007/978-1-62703-128-8_17

    Article  CAS  PubMed  Google Scholar 

  26. Allieri MA, Douay L, Deloux J et al (1990) The role of methylcellulose on colony growth of human myeloid leukemic progenitors (AML-CFU). Exp Hematol 18(8):911–915

    CAS  PubMed  Google Scholar 

  27. Sarma NJ, Takeda A, Yaseen NR (2010) Colony forming cell (CFC) assay for human hematopoietic cells. J Vis Exp 46. https://doi.org/10.3791/2195

Download references

Acknowledgments

We gratefully acknowledge that MB is funded by the German Research Foundation/Deutsche Forschungsgemeinschaft (DFG) KR2291/9-1, project number 427404172, and intramural funding. We further thank the Brigitte and Dr. Konstanze Wegener-Stiftung (Projekt 65) for funding the research of MP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandy Beyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pons, M., Beyer, M. (2023). Colony Formation Assay to Test the Impact of HDACi on Leukemic Cells. In: Krämer, O.H. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 2589. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2788-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2788-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2787-7

  • Online ISBN: 978-1-0716-2788-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics