Skip to main content

Preparation of NanoMEDIC Extracellular Vesicles to Deliver CRISPR-Cas9 Ribonucleoproteins for Genomic Exon Skipping

  • Protocol
  • First Online:
Muscular Dystrophy Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2587))

Abstract

The CRISPR-Cas9 system has quickly become the standard tool for genome editing. To deliver this system to target cells, adeno-associated virus (AAV) vectors are commonly used. In fact, AAV vectors have been utilized to deliver the CRISPR-Cas9 system to induce genomic exon skipping and restore the dystrophin protein in various Duchenne muscular dystrophy model animals. Despite the high transduction efficiency, AAV vector-mediated delivery has several limitations, such as the packaging size, prolonged overexpression of Cas9, immunogenicity against the AAV capsid, and the risk of integrating a part of the AAV genomic sequence into the host cell. To overcome these issues, we have recently engineered a transient delivery system utilizing VSV-G pseudotyped extracellular vesicles (EVs) termed NanoMEDIC (nanomembrane-derived extracellular vesicles for the delivery of macromolecular cargo). NanoMEDIC utilizes an HIV-derived Gag protein to package Cas9 protein and gRNA into EVs. The Cas9 and Gag proteins are fused to a heterodimerizer and conditionally dimerized by the addition of an inducible chemical ligand to recruit Cas9 protein into EVs. sgRNA is packaged into EVs through an HIV-derived RNA packaging signal and is subsequently released by two self-cleaving ribozymes. Utilizing these features, NanoMEDIC can achieve highly efficient packaging of the Cas9 protein and gRNA for genome editing into a variety of target cells and in vivo. Here, we describe a step-by-step protocol, including the gRNA-expressing vector construction and large-scale NanoMEDIC production, for in vivo genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Google Scholar 

  2. Knott GJ, Doudna JA CRISPR-Cas guides the future of genetic engineering. Science 361:866–869

    Google Scholar 

  3. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T et al (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4(1):143–154

    Article  CAS  Google Scholar 

  4. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403

    Article  CAS  PubMed  Google Scholar 

  5. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407

    Article  CAS  PubMed  Google Scholar 

  6. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D et al (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362(6410):86–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buchlis G, Podsakoff GM, Radu A, Hawk SM, Flake AW, Mingozzi F et al (2012) Brief report Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood 119:3038–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD et al (2019) Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 25(3):427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu H, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N et al (2019) Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24(4):566–578.e7

    Article  CAS  PubMed  Google Scholar 

  11. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kagita A, Lung MSY, Xu H, Kita Y, Sasakawa N, Iguchi T et al (2021) Efficient ssODN-mediated targeting by avoiding cellular inhibitory RNAs through precomplexed CRISPR-Cas9/sgRNA ribonucleoprotein. Stem Cell Rep 16(4):985–996

    Article  CAS  Google Scholar 

  13. Choi JG, Dang Y, Abraham S, Ma H, Zhang J, Guo H et al (2016) Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther 23(7):627–633

    Article  CAS  PubMed  Google Scholar 

  14. Mangeot PE, Risson V, Fusil F, Marnef A, Laurent E, Blin J et al (2019) Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat Commun 10(1):1–15

    Article  Google Scholar 

  15. Montagna C, Petris G, Casini A, Maule G, Franceschini GM, Zanella I et al (2018) VSV-G-enveloped vesicles for traceless delivery of CRISPR-Cas9. Mol Ther Nucleic Acids 12:453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campbell LA, Coke LM, Richie CT, Fortuno LV, Park AY, Harvey BK (2019) Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV Provirus. Mol Ther 27(1):151–163

    Article  CAS  PubMed  Google Scholar 

  17. Gee P, Lung MSY, Okuzaki Y, Sasakawa N, Iguchi T, Makita Y et al (2020) Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat Commun 11(1):1–18

    Article  Google Scholar 

  18. Putyrski M, Schultz C (2012) Protein translocation as a tool: the current rapamycin story. FEBS Lett 586:2097–2105

    Article  CAS  PubMed  Google Scholar 

  19. Bayle JH, Grimley JS, Stankunas K, Gestwicki JE, Wandless TJ, Crabtree GR (2006) Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem Biol 13(1):99–107

    Article  CAS  PubMed  Google Scholar 

  20. Yoshioka S, Fujii W, Ogawa T, Sugiura K, Naito K (2015) Development of a mono-promoter-driven CRISPR/Cas9 system in mammalian cells. Sci Rep 5:1–8

    Article  Google Scholar 

  21. Ferré-D’Amaré AR, Scott WG (2010) Small self-cleaving ribozymes. Cold Spring Harb Perspect Biol 2:a003574

    PubMed  PubMed Central  Google Scholar 

  22. Nikolic J, Belot L, Raux H, Legrand P, Gaudin Y, Albertini AA (2018) Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat Commun 9(1):1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Yusuke Kojima, Dr. Peter Karagiannis, Dr. Eman Taha, and Joseph Lee for critical reading of the manuscript. This research was supported in part by AMED grants (JP19ek0109293, JP21bm0104001, JP21bm0804005, JP21im0210115), the T-CiRA Join Research program by Takeda Pharmaceutical Company, and an Intramural Research Grant (No. 28-6) for Neurological and Psychiatric Disorders of NCNP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitsu Hotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Watanabe, K., Gee, P., Hotta, A. (2023). Preparation of NanoMEDIC Extracellular Vesicles to Deliver CRISPR-Cas9 Ribonucleoproteins for Genomic Exon Skipping. In: Maruyama, R., Yokota, T. (eds) Muscular Dystrophy Therapeutics. Methods in Molecular Biology, vol 2587. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2772-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2772-3_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2771-6

  • Online ISBN: 978-1-0716-2772-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics