Skip to main content

Web Services for RNA-RNA Interaction Prediction

  • Protocol
  • First Online:
RNA Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2586))

  • 867 Accesses

Abstract

Non-coding RNAs have various biological functions such as translational regulation, and RNA-RNA interactions play essential roles in the mechanisms of action of these RNAs. Therefore, RNA-RNA interaction prediction is an important problem in bioinformatics, and many tools have been developed for the computational prediction of RNA-RNA interactions. In addition to the development of novel algorithms with high accuracy, the development and maintenance of web services is essential for enhancing usability by experimental biologists. In this review, we survey web services for RNA-RNA interaction predictions and introduce how to use primary web services. We present various prediction tools, including general interaction prediction tools, prediction tools for specific RNA classes, and RNA-RNA interaction-based RNA design tools. Additionally, we discuss the future perspectives of the development of RNA-RNA interaction prediction tools and the sustainability of web services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, Stadler PF, Washietl S, Hofacker IL (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucl Acids Res 34(Database issue):D135–139

    CAS  PubMed  Google Scholar 

  2. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GX, Aiyer S, Raj A, Rinn JL, Chang HY, and Khavari PA (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493(7431):231–235

    CAS  PubMed  Google Scholar 

  3. Shi H, Sun Y, He M, Yang X, Hamada M, Fukunaga T, Zhang X, and Chang C (2020) Targeting the TR4 nuclear receptor-mediated lncTASR/AXL signaling with tretinoin increases the sunitinib sensitivity to better suppress the RCC progression. Oncogene, 39(3):530–545

    CAS  PubMed  Google Scholar 

  4. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3 UTRs via Alu elements. Nature 470(7333):284–288

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Langdon EM, Qiu Y, Ghanbari Niaki A, McLaughlin GA, Weidmann CA, Gerbich TM, Smith JA, Crutchley JM, Termini CM, Weeks KM, Myong S, Gladfelter AS (2018) mRNA structure determines specificity of a polyQ-driven phase separation. Science 360 (6391):922–927

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacq A, Becquet D, Guillen S, Boyer B, Bello-Goutierrez MM, Franc JL, François-Bellan AM (2021) Direct RNA-RNA interaction between Neat1 and RNA targets, as a mechanism for RNAs paraspeckle retention. RNA Biol 18(11):2016–2027

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee B, Sahoo A, Marchica J, Holzhauser E, Chen X, Li JL, Seki T, Govindarajan SS, Markey FB, Batish M, Lokhande SJ, Zhang S, Ray A, Perera RJ (2017) The long noncoding RNA SPRIGHTLY acts as an intranuclear organizing hub for pre-mRNA molecules. Sci Adv 3(5):e1602505

    PubMed  PubMed Central  Google Scholar 

  8. Matheny T, Van Treeck B, Huynh TN, Parker R (2021) RNA partitioning into stress granules is based on the summation of multiple interactions. RNA 27(2):174–189

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258

    CAS  PubMed  Google Scholar 

  10. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox D. BT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284

    PubMed  PubMed Central  Google Scholar 

  12. Sharma E, Sterne-Weiler T, O’Hanlon D, Blencowe BJ (2016) Global mapping of human RNA-RNA interactions. Mol Cell 62(4):618–626

    CAS  PubMed  Google Scholar 

  13. Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA, Robinson JT, Davidovich C, Gooding AR, Goodrich KJ, Mattick JS, Mesirov JP, Cech TR, Chang HY (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165(5):1267–1279

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen TC, Cao X, Yu P, Xiao S, Lu J, Biase FH, Sridhar B, Huang N, Zhang K, Zhong S (2016) Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat Commun 7:12023

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwakiri J, Terai G, Hamada M (2017) Computational prediction of lncRNA-mRNA interactions by integrating tissue specificity in human transcriptome. Biol Direct 12(1):15

    PubMed  PubMed Central  Google Scholar 

  16. Terai G, Iwakiri J, Kameda T, Hamada M, Asai K (2016) Comprehensive prediction of lncRNA-RNA interactions in human transcriptome. BMC Genomics 17(Suppl 1):12

    PubMed  PubMed Central  Google Scholar 

  17. Umu SU, Gardner PP (2017) A comprehensive benchmark of RNA-RNA interaction prediction tools for all domains of life. Bioinformatics 33(7):988–996

    CAS  PubMed  Google Scholar 

  18. Wright PR, Georg J, Mann M, Sorescu DA, Richter AS, Lott S, Kleinkauf R, Hess WR, Backofen R (2017) CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucl Acids Res 42(Web Server issue):W119–W123

    Google Scholar 

  19. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488

    CAS  PubMed  Google Scholar 

  20. Raden M, Ali SM, Alkhnbashi OS, Busch A, Costa F, Davis JA, Eggenhofer F, Gelhausen R, Georg J, Heyne S, Hiller M, Kundu K, Kleinkauf R, Lott SC, Mohamed MM, Mattheis A, Miladi M, Richter AS, Will S, Wolff J, Wright PR, Backofen R (2018) Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res 46(W1):W25–W29

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24):2849–2856

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mann M, Wright PR, Backofen R (2017) IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 45(W1):W435–W439

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wright PR, Richter AS, Papenfort K, Mann M, Vogel J, Hess WR, Backofen R, Georg J (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci USA 110(37):E3487–E3496

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lai D, Meyer IM (2016) A comprehensive comparison of general RNA–RNA interaction prediction methods. Nucleic Acids Research 44(7):e61–e61

    PubMed  Google Scholar 

  25. Pain A, Ott A, Amine H, Rochat T, Bouloc P, Gautheret D (2015) An assessment of bacterial small RNA target prediction programs. RNA Biol 12(5):509–513

    PubMed  PubMed Central  Google Scholar 

  26. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36(Web Server issue):W70–W74

    Google Scholar 

  27. Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA–RNA binding. Bioinformatics 22(10):1177–1182

    PubMed  Google Scholar 

  28. Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1(1):1–10

    Google Scholar 

  29. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for rna secondary structure. Biopolymers: Original Res Biomol 29(6–7):1105–1119

    CAS  Google Scholar 

  30. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

    PubMed  PubMed Central  Google Scholar 

  31. Watkins NJ, Bohnsack MT (2012) The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA 3(3):397–414

    CAS  PubMed  Google Scholar 

  32. Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283(5405):1168–1171

    CAS  PubMed  Google Scholar 

  33. Schattner P, Decatur WA, Davis CA, Ares M, Fournier MJ, Lowe TM (2004) Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 32(14):4281–4296

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123

    CAS  PubMed  Google Scholar 

  35. Fukunaga T, Hamada M (2017) RIblast: an ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach. Bioinformatics 33(17):2666–2674

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukunaga T, Iwakiri J, Ono Y, Hamada M (2019) LncRRIsearch: a web server for lncRNA-RNA interaction prediction integrated with tissue-specific expression and subcellular localization data. Front Genet 10:462

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso Pulido T, Guigo R, Johnson R (2017) LncATLAS database for subcellular localization of long noncoding RNAs. RNA 23(7):1080–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Navarro Gonzalez J, Zweig AS, Speir ML, Schmelter D, Rosenbloom KR, Raney BJ, Powell CC, Nassar LR, Maulding ND, Lee CM, Lee BT, Hinrichs AS, Fyfe AC, Fernandes JD, Diekhans M, Clawson H, Casper J, Benet-Pagès A, Barber GP, Haussler D, Kuhn RM, Haeussler M, Kent WJ (2021) The UCSC Genome Browser database: 2021 update. Nucleic Acids Res 49(D1):D1046–D1057

    PubMed  Google Scholar 

  39. Seemann S. E, Menzel P, Backofen R, Gorodkin J (2011) The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences. Nucleic Acids Res 39(Web Server issue):W107–W111

    Google Scholar 

  40. Kato Y, Sato K, Asai K, Akutsu T (2012) Rtips: fast and accurate tools for RNA 2D structure prediction using integer programming. Nucleic Acids Res 40(Web Server issue):29–34

    Google Scholar 

  41. Eggenhofer F, Tafer H, Stadler PF, Hofacker IL (2011) RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Res 39(Web Server issue):W149–W154

    Google Scholar 

  42. Kery MB, Feldman M, Livny J, Tjaden B (2014) TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 42(Web Server issue):W124–W129

    Google Scholar 

  43. Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013) RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41(Web Server issue):W471–W474

    Google Scholar 

  44. Xu X, Chen SJ (2016) VfoldCPX Server: predicting RNA-RNA complex structure and stability. PLoS One 11(9):e0163454

    PubMed  PubMed Central  Google Scholar 

  45. Davis JA, Saunders SJ, Mann M, Backofen R (2017) Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data. Nucleic Acids Res 45(15):8745–8757

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173

    Google Scholar 

  47. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    CAS  PubMed  Google Scholar 

  48. Chorostecki U, Palatnik JF (2014) comTAR: a web tool for the prediction and characterization of conserved microRNA targets in plants. Bioinformatics 30(14):2066–2067

    CAS  PubMed  Google Scholar 

  49. Friedman Y, Karsenty S, Linial M (2014) miRror-Suite: decoding coordinated regulation by microRNAs. Database (Oxford) 2014

    Google Scholar 

  50. Šulc M, Marín RM, Robins HS, Vaníček J (2015) PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3’ UTRs and coding sequences. Nucleic Acids Res 43(W1):W474–W479

    PubMed  PubMed Central  Google Scholar 

  51. Wu C, Bardes EE, Jegga AG, Aronow BJ (2014) ToppMiR: ranking microRNAs and their mRNA targets based on biological functions and context. Nucleic Acids Res 42(Web Server issue):W107–W113

    Google Scholar 

  52. Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46(W1):W242–W245

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47(W1):W171–W174

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. PLoS One 10(4):e0124633

    PubMed  PubMed Central  Google Scholar 

  55. Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2009) siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 10:392

    Google Scholar 

  56. Lu ZJ, Mathews DH (2008) OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res 36(Web Server issue):W104–108

    Google Scholar 

  57. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Taneda A, Sato K (2021) A web server for designing molecular switches composed of two interacting RNAs. Int J Mol Sci 22(5):2720

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Menzel P, Seemann SE, Gorodkin J (2012) RILogo: visualizing RNA-RNA interactions. Bioinformatics 28(19):2523–2526

    CAS  PubMed  Google Scholar 

  60. Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46(W1):W49–W54

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu WS, Huang WC, Brown JS, Zhang D, Song X, Chen H, Tu S, Weng Z, Lee HC (2018) pirScan: a webserver to predict piRNA targeting sites and to avoid transgene silencing in C. elegans. Nucleic Acids Res 46(W1):W43–W48

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kern F, Fehlmann T, Keller A (2020) On the lifetime of bioinformatics web services. Nucleic Acids Res 48(22):12523–12533

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Fukunaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fukunaga, T., Iwakiri, J., Hamada, M. (2023). Web Services for RNA-RNA Interaction Prediction. In: Kawaguchi, R.K., Iwakiri, J. (eds) RNA Structure Prediction. Methods in Molecular Biology, vol 2586. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2768-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2768-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2767-9

  • Online ISBN: 978-1-0716-2768-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics