Skip to main content

Mosquito Surveillance for West Nile Virus

  • Protocol
  • First Online:
West Nile Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2585))

Abstract

Identifying the mosquitoes responsible for transmitting human disease-causing pathogens is of critical importance for effective control of mosquito-borne outbreaks. West Nile virus is often transferred by adult female mosquitoes in the genus Culex, which deposit eggs in a variety of aquatic habitats throughout the world. Herein we describe several methodological approaches to monitor these species in nature, as well as offering details for data collection and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clements AN (2011) The biology of mosquitoes, volume 3: transmission of viruses and interactions with bacteria. CABI Publishing, New York, NY, USA

    Google Scholar 

  2. Kramer LD, Styer LM, Ebel GD (2008) A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53:61–81. https://doi.org/10.1146/annurev.ento.53.103106.093258

    Article  CAS  PubMed  Google Scholar 

  3. CDC (2021) Final cumulative maps and data – West Nile Virus. https://www.cdc.gov/westnile/statsmaps/cumMapsData.html. Accessed 4 Feb 2022

  4. Fonseca DM, Keyghobadi N, Malcolm CA et al (2004) Emerging vectors in the Culex pipiens Complex. Science 303:1535–1538. https://doi.org/10.1126/science.1094247

    Article  CAS  PubMed  Google Scholar 

  5. Rochlin I, Faraji A, Healy K et al (2019) West Nile virus mosquito vectors in North America. J Med Entomol 56:1475–1490. https://doi.org/10.1093/jme/tjz146

    Article  PubMed  Google Scholar 

  6. Farajollahi A, Fonseca DM, Kramer LD et al (2011) “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 11:1577–1585. https://doi.org/10.1016/j.meegid.2011.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hubalek Z (2000) European experience with the West Nile virus ecology and epidemiology: could it be relevant for the New World? Viral Immunol 13:415–426

    Article  CAS  PubMed  Google Scholar 

  8. Gu W, Unnasch TR, Katholi CR et al (2008) Fundamental issues in mosquito surveillance for arboviral transmission. Trans R Soc Trop Med Hyg 102:817–822. https://doi.org/10.1016/j.trstmh.2008.03.019

    Article  PubMed  Google Scholar 

  9. Kesavaraju B, Kiyoguchi D, Dickson S (2011) Efficacy of gravid traps in trapping Culex pipiens. J Am Mosq Control Assoc 2011(10/25):320–322

    Article  Google Scholar 

  10. (2021) Mosquito Surveillance Software | West Nile Virus | CDC. https://www.cdc.gov/westnile/resourcepages/mosqSurvSoft.html. Accessed 4 Feb 2022

  11. CDC (2013) West Nile virus in the United States: guidelines for surveillance, prevention, and control

    Google Scholar 

  12. Anderson JF, Main AJ (2006) Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the northeastern United States. J Infect Dis 194:1577–1579

    Article  PubMed  Google Scholar 

  13. Dunphy BM, Kovach KB, Gehrke EJ et al (2019) Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci Rep 9:6637. https://doi.org/10.1038/s41598-019-43246-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harrington LC, Poulson RL (2008) Considerations for accurate identification of adult Culex restuans (Diptera: Culicidae) in field studies. J Med Entomol 45:1–8

    Article  CAS  PubMed  Google Scholar 

  15. Rochlin I, Santoriello MP, Mayer RT et al (2007) Improved high-throughput method for molecular identification of Culex mosquitoes. J Am Mosq Control Assoc 23:488–491

    Article  CAS  PubMed  Google Scholar 

  16. Reisen WK, Boyce K, Cummings RC et al (1999) Comparative effectiveness of three adult mosquito sampling methods in habitats representative of four different biomes of California. J Am Mosq Control Assoc 15:24–31

    CAS  PubMed  Google Scholar 

  17. McCardle PW, Webb RE, Norden BB et al (2004) Evaluation of five trapping systems for the surveillance of gravid mosquitoes in Prince Georges county, Maryland. J Am Mosq Control Assoc 20:254–260

    PubMed  Google Scholar 

  18. Burkett DA, Kelly R, Porter CH et al (2004) Commercial mosquito trap and gravid trap oviposition media evaluation, Atlanta, Georgia. J Am Mosq Control Assoc 20:233–238

    PubMed  Google Scholar 

  19. Rochlin I, Kawalkowski M, Ninivaggi DV (2016) Comparison of mosquito magnet and biogents sentinel traps for operational surveillance of container-inhabiting Aedes (Diptera: Culicidae) species. J Med Entomol 53:454–459. https://doi.org/10.1093/jme/tjv171

    Article  PubMed  Google Scholar 

  20. Reiter P, Jakob WL, Francy DB et al (1986) Evaluation of the CDC gravid trap for the surveillance of St. Louis encephalitis vectors in Memphis, Tennessee. J Am Mosq Control Assoc 2:209–211

    CAS  PubMed  Google Scholar 

  21. McNamara TD, Healy K (2021) A comparison of Hay and fish emulsion-infused water as oviposition attractants for the CDC gravid trap. J Med Entomol. https://doi.org/10.1093/jme/tjab203

Download references

Acknowledgments

We thank Fengwei Bai for inviting us to participate in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Yee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yee, D.A., Faraji, A., Rochlin, I. (2023). Mosquito Surveillance for West Nile Virus. In: Bai, F. (eds) West Nile Virus. Methods in Molecular Biology, vol 2585. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2760-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2760-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2759-4

  • Online ISBN: 978-1-0716-2760-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics