Skip to main content

Practical Considerations for Complex Tissue Dissociation for Single-Cell Transcriptomics

  • Protocol
  • First Online:
Single Cell Transcriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2584))

Abstract

Single-cell and single-nucleus RNA sequencing have revolutionized biomedical research, allowing analysis of complex tissues, identification of novel cell types, and mapping of development as well as disease states. Successful application of this technology critically relies on the dissociation of solid organs and tissues into high-quality single-cell (or nuclei) suspensions.

In this chapter, we examine several key aspects of the tissue handling workflow that need to be considered when establishing an efficient tissue processing protocol for single-cell RNA sequencing (scRNA-seq). These include tissue collection, transport, and storage, as well as the choice of the dissociation conditions. We emphasize the importance of the tissue quality check and discuss the advantages (and potential limitations) of tissue cryopreservation. We provide practical tips and considerations on each of the steps of the processing workflow, and comment on how to maximize cell viability and integrity, which are critical for obtaining high-quality single-cell transcriptomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Travaglini KJ et al (2020) A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587(7835):619–625

    Article  CAS  Google Scholar 

  2. Regev A et al (2017) The human cell atlas. Elife 6:e27041

    Article  Google Scholar 

  3. Litvinukova M et al (2020) Cells of the adult human heart. Nature 588(7838):466–472

    Article  CAS  Google Scholar 

  4. Montoro DT et al (2018) A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560(7718):319–324

    Article  CAS  Google Scholar 

  5. Plasschaert LW et al (2018) A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560(7718):377–381

    Article  CAS  Google Scholar 

  6. Buenrostro JD et al (2018) Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173(6):1535–1548 e16

    Article  CAS  Google Scholar 

  7. Tusi BK et al (2018) Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555(7694):54–60

    Article  CAS  Google Scholar 

  8. Morse C et al (2019) Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J 54(2):1802441

    Article  CAS  Google Scholar 

  9. Vieira Braga FA et al (2019) A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med 25(7):1153–1163

    Article  CAS  Google Scholar 

  10. Kim N et al (2020) Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun 11(1):2285

    Article  CAS  Google Scholar 

  11. Seumois G, Vijayanand P (2019) Single-cell analysis to understand the diversity of immune cell types that drive disease pathogenesis. J Allergy Clin Immunol 144(5):1150–1153

    Article  CAS  Google Scholar 

  12. Ramachandran P et al (2019) Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575(7783):512–518

    Article  CAS  Google Scholar 

  13. Davis-Marcisak EF et al (2021) From bench to bedside: single-cell analysis for cancer immunotherapy. Cancer Cell 39(8):1062–1080

    Article  CAS  Google Scholar 

  14. Yofe I, Dahan R, Amit I (2020) Single-cell genomic approaches for developing the next generation of immunotherapies. Nat Med 26(2):171–177

    Article  CAS  Google Scholar 

  15. Habib N et al (2016) Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353(6302):925–928

    Article  CAS  Google Scholar 

  16. Lacar B et al (2016) Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun 7:11022

    Article  CAS  Google Scholar 

  17. Rozenblatt-Rosen O et al (2017) The human cell atlas: from vision to reality. Nature 550(7677):451–453

    Article  CAS  Google Scholar 

  18. Schiller HB et al (2019) The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am J Respir Cell Mol Biol 61(1):31–41

    Article  CAS  Google Scholar 

  19. Haque A et al (2017) A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med 9(1):75

    Article  Google Scholar 

  20. Svensson V, Vento-Tormo R, Teichmann SA (2018) Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13(4):599–604

    Article  CAS  Google Scholar 

  21. Guibert EE et al (2011) Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother 38(2):125–142

    Article  Google Scholar 

  22. Lafzi A et al (2018) Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 13(12):2742–2757

    Article  CAS  Google Scholar 

  23. Conesa A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  Google Scholar 

  24. Madissoon E et al (2019) scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol 21(1):1

    Article  CAS  Google Scholar 

  25. Alles J et al (2017) Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol 15(1):44

    Article  Google Scholar 

  26. Attar M et al (2018) A practical solution for preserving single cells for RNA sequencing. Sci Rep 8(1):2151

    Article  Google Scholar 

  27. Ruf-Zamojski F et al (2018) Single-cell stabilization method identifies gonadotrope transcriptional dynamics and pituitary cell type heterogeneity. Nucleic Acids Res 46(21):11370–11380

    Article  CAS  Google Scholar 

  28. Thomsen ER et al (2016) Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods 13(1):87–93

    Article  CAS  Google Scholar 

  29. Wohnhaas CT et al (2019) DMSO cryopreservation is the method of choice to preserve cells for droplet-based single-cell RNA sequencing. Sci Rep 9(1):10699

    Article  Google Scholar 

  30. Llamazares-Prada M et al (2021) Versatile workflow for cell type-resolved transcriptional and epigenetic profiles from cryopreserved human lung. JCI Insight 6(6):e140443

    Article  Google Scholar 

  31. Guillaumet-Adkins A et al (2017) Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol 18(1):45

    Article  Google Scholar 

  32. Krjutskov K et al (2016) Single-cell transcriptome analysis of endometrial tissue. Hum Reprod 31(4):844–853

    Article  CAS  Google Scholar 

  33. Denisenko E et al (2020) Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol 21(1):130

    Article  CAS  Google Scholar 

  34. van den Brink SC et al (2017) Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 14(10):935–936

    Article  Google Scholar 

  35. Adam M, Potter AS, Potter SS (2017) Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development 144(19):3625–3632

    CAS  Google Scholar 

  36. O'Flanagan CH et al (2019) Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol 20(1):210

    Article  Google Scholar 

  37. Cohen M et al (2018) Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175(4):1031–1044 e18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Jurkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pohl, S.T., Prada, M.L., Espinet, E., Jurkowska, R. (2023). Practical Considerations for Complex Tissue Dissociation for Single-Cell Transcriptomics. In: Calogero, R.A., Benes, V. (eds) Single Cell Transcriptomics. Methods in Molecular Biology, vol 2584. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2756-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2756-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2755-6

  • Online ISBN: 978-1-0716-2756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics