Skip to main content

Development of γδ T Cells: Soldiers on the Front Lines of Immune Battles

  • Protocol
  • First Online:
T-Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2580))

Abstract

While the functions of αβ T cells in host resistance to pathogen infection are understood in far more detail than those of γδ lineage T cells, γδ T cells perform critical, essential functions during immune responses that cannot be compensated for by αβ T cells. Accordingly, it is critical to understand how the development of γδ T cells is controlled so that their generation and function might be manipulated in future for therapeutic benefit. This introductory chapter will focus primarily on the basic processes that underlie γδ T cell development in the thymus, as well as the current understanding of how they are controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vantourout P, Hayday A (2013) Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 13:88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nielsen MM, Witherden DA, Havran WL (2017) gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 17:733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kabelitz D, Lettau M, Janssen O (2017) Immunosurveillance by human gammadelta T lymphocytes: the emerging role of butyrophilins. F1000Res 6

    Google Scholar 

  4. Melandri D, Zlatareva I, Chaleil RAG et al (2018) The gammadeltaTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat Immunol 19:1352–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Papotto PH, Reinhardt A, Prinz I et al (2018) Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J Autoimmun 87:26–37

    Article  CAS  PubMed  Google Scholar 

  6. Khairallah C, Chu TH, Sheridan BS (2018) Tissue adaptations of memory and tissue-resident gamma delta T cells. Front Immunol 9:2636. https://doi.org/10.3389/fimmu.2018.02636. eCollection 02018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheridan BS, Romagnoli PA, Pham QM et al (2013) γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39:184–195. https://doi.org/10.1016/j.immuni.2013.1006.1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guerra-Maupome M, Palmer MV, Waters WR et al (2019) Characterization of γδ T cell effector/memory subsets based on CD27 and CD45R expression in response to mycobacterium bovis infection. Immunohorizons 3:208–218. https://doi.org/10.4049/immunohorizons.1900032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lalor SJ, McLoughlin RM (2016) Memory γδ T cells-newly appreciated protagonists in infection and immunity. Trends Immunol 37:690–702. https://doi.org/10.1016/j.it.2016.1007.1006. Epub 2016 Aug 1023

    Article  CAS  PubMed  Google Scholar 

  10. King DP, Hyde DM, Jackson KA et al (1999) Cutting edge: protective response to pulmonary injury requires gamma delta T lymphocytes. J Immunol 162:5033–5036

    CAS  PubMed  Google Scholar 

  11. Ramsburg E, Tigelaar R, Craft J et al (2003) Age-dependent requirement for gammadelta T cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med 198:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mamedov MR, Scholzen A, Nair RV et al (2018) A macrophage Colony-stimulating-factor-producing gammadelta T cell subset prevents malarial parasitemic recurrence. Immunity 48:350–363.e357. https://doi.org/10.1016/j.immuni.2018.1001.1009. Epub 2018 Feb 1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ménoret A, Buturla JA, Xu MM et al (2018) T cell-directed IL-17 production by lung granular γδ T cells is coordinated by a novel IL-2 and IL-1β circuit. Mucosal Immunol 11:1398–1407. https://doi.org/10.1038/s41385-41018-40037-41380. Epub 42018 Jun 41315

    Article  PubMed  PubMed Central  Google Scholar 

  14. Girardi M, Oppenheim DE, Steele CR et al (2001) Regulation of cutaneous malignancy by {gamma}{delta} T cells. Science 20:20

    Google Scholar 

  15. Sharp LL, Jameson JM, Cauvi G et al (2005) Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol 6:73–79

    Article  CAS  PubMed  Google Scholar 

  16. Nedellec S, Bonneville M, Scotet E (2010) Human Vgamma9Vdelta2 T cells: from signals to functions. Semin Immunol 22:199–206

    Article  CAS  PubMed  Google Scholar 

  17. Meraviglia S, Eberl M, Vermijlen D et al (2010) In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161:290–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sebestyen Z, Prinz I, Dechanet-Merville J et al (2019) Translating gammadelta (gammadelta) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov

    Google Scholar 

  19. Garber K (2020) γδ T cells bring unconventional cancer-targeting to the clinic – again. Nat Biotechnol 38:389–391. https://doi.org/10.1038/s41587-41020-40487-41582

    Article  CAS  PubMed  Google Scholar 

  20. Coffelt SB, Kersten K, Doornebal CW et al (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Housseau F, Wu S, Wick EC et al (2016) Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res 76:2115–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Markle JG, Mortin-Toth S, Wong AS et al (2013) gammadelta T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. J Immunol 190:5392–5401

    Article  CAS  PubMed  Google Scholar 

  23. Rei M, Goncalves-Sousa N, Lanca T et al (2014) Murine CD27(−) Vgamma6(+) gammadelta T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci U S A 111:E3562–E3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. In TSH, Trotman-Grant A, Fahl S et al (2017) HEB is required for the specification of fetal IL-17-producing gammadelta T cells. Nat Commun 8:2004

    Article  PubMed  PubMed Central  Google Scholar 

  25. Born WK, Kemal Aydintug M, O'Brien RL (2013) Diversity of gammadelta T-cell antigens. Cell Mol Immunol 10:13–20

    Article  CAS  PubMed  Google Scholar 

  26. Willcox BE, Willcox CR (2019) gammadelta TCR ligands: the quest to solve a 500-million-year-old mystery. Nat Immunol 20:121–128

    Article  CAS  PubMed  Google Scholar 

  27. Rock EP, Sibbald PR, Davis MM et al (1994) CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328. https://doi.org/10.1084/jem.1179.1081.1323

    Article  CAS  PubMed  Google Scholar 

  28. Marlin R, Pappalardo A, Kaminski H et al (2017) Sensing of cell stress by human gammadelta TCR-dependent recognition of annexin A2. Proc Natl Acad Sci U S A 114:3163–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adams EJ, Chien YH, Garcia KC (2005) Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Science 308:227–231

    Article  CAS  PubMed  Google Scholar 

  30. Crowley MP, Fahrer AM, Baumgarth N et al (2000) A population of murine gammadelta T cells that recognize an inducible MHC class Ib molecule. Science 287:314–316

    Article  CAS  PubMed  Google Scholar 

  31. Luoma AM, Castro CD, Mayassi T et al (2013) Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39:1032–1042. https://doi.org/10.1016/j.immuni.2013.1011.1001. Epub 2013 Nov 1014

    Article  CAS  PubMed  Google Scholar 

  32. Le Nours J, Gherardin NA, Ramarathinam SH et al (2019) A class of gammadelta T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science 366:1522–1527

    Article  PubMed  Google Scholar 

  33. Gu S, Borowska MT, Boughter CT et al (2018) Butyrophilin3A proteins and Vgamma9Vdelta2 T cell activation. Semin Cell Dev Biol 84:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harly C, Guillaume Y, Nedellec S et al (2012) Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood 120:2269–2279. https://doi.org/10.1182/blood-2012-2205-430470. Epub 432012 Jul 430475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Y, Li L, Yuan L et al (2019) A structural change in butyrophilin upon phosphoantigen binding underlies phosphoantigen-mediated Vgamma9Vdelta2 T cell activation. Immunity 50(1043–1053):e1045

    Google Scholar 

  36. Willcox CR, Vantourout P, Salim M et al (2019) Butyrophilin-like 3 directly binds a human Vgamma4(+) T cell receptor using a modality distinct from clonally-restricted antigen. Immunity 51(813–825):e814

    Google Scholar 

  37. Lauritsen JP, Haks MC, Lefebvre JM et al (2006) Recent insights into the signals that control alphabeta/gammadelta-lineage fate. Immunol Rev 209:176–190

    Article  PubMed  Google Scholar 

  38. Xiong N, Raulet DH (2007) Development and selection of gammadelta T cells. Immunol Rev 215:15–31

    Article  CAS  PubMed  Google Scholar 

  39. Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345

    Article  CAS  PubMed  Google Scholar 

  40. Bonneville M, O'Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478

    Article  CAS  PubMed  Google Scholar 

  41. O'Brien RL, Born WK (2010) gammadelta T cell subsets: a link between TCR and function? Semin Immunol 22:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vermijlen D, Gatti D, Kouzeli A et al (2018) gammadelta T cell responses: how many ligands will it take till we know? Semin Cell Dev Biol 84:75–86

    Article  CAS  PubMed  Google Scholar 

  43. Jin Y, Xia M, Saylor CM et al (2010) Cutting edge: intrinsic programming of thymic gammadeltaT cells for specific peripheral tissue localization. J Immunol 185:7156–7160

    Article  CAS  PubMed  Google Scholar 

  44. Lee SY, Stadanlick J, Kappes DJ et al (2010) Towards a molecular understanding of the differential signals regulating alphabeta/gammadelta T lineage choice. Semin Immunol 22:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lewis JM, Girardi M, Roberts SJ et al (2006) Selection of the cutaneous intraepithelial gammadelta+ T cell repertoire by a thymic stromal determinant. Nat Immunol 7:843–850

    Article  CAS  PubMed  Google Scholar 

  46. Pereira P, Zijlstra M, McMaster J et al (1992) Blockade of transgenic gamma delta T cell development in beta 2-microglobulin deficient mice. EMBO J 11:25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Coffey F, Lee SY, Buus TB et al (2014) The TCR ligand-inducible expression of CD73 marks gammadelta lineage commitment and a metastable intermediate in effector specification. J Exp Med 211:329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ribot JC, deBarros A, Pang DJ et al (2009) CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 10:427–436. https://doi.org/10.1038/ni.1717. Epub 2009 Mar 1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kreslavsky T, Garbe AI, Krueger A et al (2008) T cell receptor-instructed alphabeta versus gammadelta lineage commitment revealed by single-cell analysis. J Exp Med 205:1173–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roberts NA, White AJ, Jenkinson WE et al (2012) Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pennington DJ, Silva-Santos B, Shires J et al (2003) The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 4:991–998

    Article  CAS  PubMed  Google Scholar 

  52. Silva-Santos B, Pennington DJ, Hayday AC (2005) Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 307:925–928

    Article  CAS  PubMed  Google Scholar 

  53. Petrie HT, Scollay R, Shortman K (1992) Commitment to the T cell receptor-alpha beta or -gamma delta lineages can occur just prior to the onset of CD4 and CD8 expression among immature thymocytes. Eur J Immunol 22:2185–2188

    Article  CAS  PubMed  Google Scholar 

  54. Ciofani M, Knowles GC, Wiest DL et al (2006) Stage-specific and differential notch dependency at the alphabeta and gammadelta T lineage bifurcation. Immunity 25:105–116

    Article  CAS  PubMed  Google Scholar 

  55. Narayan K, Kang J (2010) Disorderly conduct in gammadelta versus alphabeta T cell lineage commitment. Semin Immunol 22:222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wong GW, Zuniga-Pflucker JC (2010) gammadelta and alphabeta T cell lineage choice: resolution by a stronger sense of being. Semin Immunol 22:228–236

    Article  CAS  PubMed  Google Scholar 

  57. Hayes SM, Li L, Love PE (2005) TCR signal strength influences alphabeta/gammadelta lineage fate. Immunity 22:583–593

    Article  CAS  PubMed  Google Scholar 

  58. Haks MC, Lefebvre JM, Lauritsen JP et al (2005) Attenuation of gammadeltaTCR signaling efficiently diverts thymocytes to the alphabeta lineage. Immunity 22:595–606

    Article  CAS  PubMed  Google Scholar 

  59. Kreslavsky T, von Boehmer H (2010) gammadeltaTCR ligands and lineage commitment. Semin Immunol 22:214–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meyer C, Zeng X, Chien YH (2010) Ligand recognition during thymic development and gammadelta T cell function specification. Semin Immunol 22:207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boyden LM, Lewis JM, Barbee SD et al (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barbee SD, Woodward MJ, Turchinovich G et al (2011) Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc Natl Acad Sci U S A 108:3330–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Marco BR, Roberts NA, Dart RJ et al (2016) Epithelia use butyrophilin-like molecules to shape organ-specific gammadelta T cell compartments. Cell 167(203–218):e217

    Google Scholar 

  64. Jensen KD, Su X, Shin S et al (2008) Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29:90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Havran WL, Allison JP (1988) Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335:443–445

    Article  CAS  PubMed  Google Scholar 

  66. Fahl SP, Coffey F, Kain L et al (2018) Role of a selecting ligand in shaping the murine gammadelta-TCR repertoire. Proc Natl Acad Sci U S A 115:1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prinz I, Silva-Santos B, Pennington DJ (2013) Functional development of gammadelta T cells. Eur J Immunol 43:1988–1994

    Article  CAS  PubMed  Google Scholar 

  68. Malhotra N, Narayan K, Cho OH et al (2013) A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38:681–693

    Article  CAS  PubMed  Google Scholar 

  69. Gray EE, Ramirez-Valle F, Xu Y et al (2013) Deficiency in IL-17-committed Vgamma4(+) gammadelta T cells in a spontaneous Sox13-mutant CD45.1(+) congenic mouse substrain provides protection from dermatitis. Nat Immunol 14:584–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zuberbuehler MK, Parker ME, Wheaton JD et al (2019) The transcription factor c-Maf is essential for the commitment of IL-17-producing gammadelta T cells. Nat Immunol 20:73–85

    Article  CAS  PubMed  Google Scholar 

  71. Turchinovich G, Hayday AC (2011) Skint-1 identifies a common molecular mechanism for the development of interferon-gamma-secreting versus interleukin-17-secreting gammadelta T cells. Immunity 35:59–68

    Article  CAS  PubMed  Google Scholar 

  72. Alonzo ES, Gottschalk RA, Das J et al (2010) Development of promyelocytic zinc finger and ThPOK-expressing innate gamma delta T cells is controlled by strength of TCR signaling and Id3. J Immunol 184:1268–1279

    Article  CAS  PubMed  Google Scholar 

  73. Verykokakis M, Boos MD, Bendelac A et al (2010) Inhibitor of DNA binding 3 limits development of murine slam-associated adaptor protein-dependent "innate" gammadelta T cells. PLoS One 5:e9303

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kreslavsky T, Savage AK, Hobbs R et al (2009) TCR-inducible PLZF transcription factor required for innate phenotype of a subset of gammadelta T cells with restricted TCR diversity. Proc Natl Acad Sci U S A 106:12453–12458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lauritsen JP, Wong GW, Lee SY et al (2009) Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation notch independent. Immunity 31:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Park K, He X, Lee HO et al (2010) TCR-mediated ThPOK induction promotes development of mature (CD24-) gammadelta thymocytes. EMBO J 29:2329–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Munoz-Ruiz M, Ribot JC, Grosso AR et al (2016) TCR signal strength controls thymic differentiation of discrete proinflammatory gammadelta T cell subsets. Nat Immunol 17:721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sumaria N, Grandjean CL, Silva-Santos B et al (2017) Strong TCRgammadelta signaling prohibits Thymic development of IL-17A-secreting gammadelta T cells. Cell Rep 19:2469–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wencker M, Turchinovich G, Di Marco BR et al (2014) Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat Immunol 15:80–87

    Article  CAS  PubMed  Google Scholar 

  80. Haas JD, Ravens S, Duber S et al (2012) Development of interleukin-17-producing gammadelta T cells is restricted to a functional embryonic wave. Immunity 37:48–59

    Article  CAS  PubMed  Google Scholar 

  81. Narayan K, Sylvia KE, Malhotra N et al (2012) Intrathymic programming of effector fates in three molecularly distinct gammadelta T cell subtypes. Nat Immunol 13:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Spidale NA, Frascoli M, Kang J (2019) gammadeltaTCR-independent origin of neonatal gammadelta T cells prewired for IL-17 production. Curr Opin Immunol 58:60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ribot JC, Serre K, Silva-Santos B (2017) Developmental and functional assays to study murine and human γδ T cells. Methods Mol Biol 1514:257–267. https://doi.org/10.1007/1978-1001-4939-6548-1009_1018

    Article  CAS  PubMed  Google Scholar 

  84. Jameson J, Ugarte K, Chen N et al (2002) A role for skin gammadelta T cells in wound repair. Science 296:747–749

    Article  CAS  PubMed  Google Scholar 

  85. Jameson JM, Sharp LL, Witherden DA et al (2004) Regulation of skin cell homeostasis by gamma delta T cells. Front Biosci 9:2640–2651

    Article  CAS  PubMed  Google Scholar 

  86. Sandrock I, Reinhardt A, Ravens S et al (2018) Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing gammadelta T cells. J Exp Med 215:3006–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Koenecke C, Chennupati V, Schmitz S et al (2009) In vivo application of mAb directed against the gammadelta TCR does not deplete but generates "invisible" gammadelta T cells. Eur J Immunol 39:372–379

    Article  CAS  PubMed  Google Scholar 

  88. Fiala GJ, Schaffer AM, Merches K et al (2019) Proximal Lck promoter-driven Cre function is limited in neonatal and ineffective in adult gammadelta T cell development. J Immunol 203:569–579

    Article  CAS  PubMed  Google Scholar 

  89. Lee SY, Coffey F, Fahl SP et al (2014) Noncanonical mode of ERK action controls alternative alphabeta and gammadelta T cell lineage fates. Immunity 41:934–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang B, Wu J, Jiao Y et al (2015) Differential requirements of TCR signaling in homeostatic maintenance and function of dendritic epidermal T cells. J Immunol 195:4282–4291. https://doi.org/10.4049/jimmunol.1501220. Epub 1502015 Sep 1501225

    Article  CAS  PubMed  Google Scholar 

  91. Ravens S, Hengst J, Schlapphoff V et al (2018) Human γδ T cell receptor repertoires in peripheral blood remain stable despite clearance of persistent hepatitis C virus infection by direct-acting antiviral drug therapy. Front Immunol 9:510. https://doi.org/10.3389/fimmu.2018.00510. eCollection 02018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ravens S, Schultze-Florey C, Raha S et al (2017) Human gammadelta T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol 18:393–401. https://doi.org/10.1038/ni.3686. Epub 2017 Feb 1020

    Article  CAS  PubMed  Google Scholar 

  93. Di Lorenzo B, Ravens S, Silva-Santos B (2019) High-throughput analysis of the human thymic Vδ1(+) T cell receptor repertoire. Sci Data 6:115. https://doi.org/10.1038/s41597-41019-40118-41592

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cheng C, Wang B, Gao L et al (2018) Next generation sequencing reveals changes of the γδ T cell receptor repertoires in patients with pulmonary tuberculosis. Sci Rep 8:3956. https://doi.org/10.1038/s41598-41018-22061-x

    Article  PubMed  PubMed Central  Google Scholar 

  95. Papadopoulou M, Tieppo P, McGovern N et al (2019) TCR sequencing reveals the distinct development of fetal and adult human Vγ9Vδ2 T cells. J Immunol 203:1468–1479. https://doi.org/10.4049/jimmunol.1900592. Epub 1902019 Aug 1900514

    Article  CAS  PubMed  Google Scholar 

  96. Fichtner AS, Ravens S, Prinz I (2020) Human γδ TCR repertoires in health and disease. Cells 9:800. https://doi.org/10.3390/cells9040800

    Article  CAS  PubMed Central  Google Scholar 

  97. Ogongo P, Steyn AJ, Karim F et al (2020) Differential skewing of donor-unrestricted and γδ T cell repertoires in tuberculosis-infected human lungs. J Clin Invest 130:214–230. https://doi.org/10.1172/JCI130711

    Article  CAS  PubMed  Google Scholar 

  98. Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Janssen A, Villacorta Hidalgo J, Beringer DX et al (2020) γδ T-cell receptors derived from breast cancer-infiltrating T lymphocytes mediate antitumor reactivity. Cancer Immunol Res 8:530–543. https://doi.org/10.1158/2326-6066.CIR-1119-0513. Epub 2020 Feb 1154

    Article  CAS  PubMed  Google Scholar 

  100. Wu Y, Kyle-Cezar F, Woolf RT et al (2019) An innate-like Vdelta1(+) gammadelta T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci Transl Med 11

    Google Scholar 

  101. Pizzolato G, Kaminski H, Tosolini M et al (2019) Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVdelta1 and TCRVdelta2 gammadelta T lymphocytes. Proc Natl Acad Sci U S A 116:11906–11915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tan L, Sandrock I, Odak I et al (2019) Single-cell transcriptomics identifies the adaptation of Scart1(+) Vγ6(+) T cells to skin residency as activated effector cells. Cell Rep 27:3657–3671.e3654. https://doi.org/10.1016/j.celrep.2019.3605.3064

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Wiest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Contreras, A.V., Wiest, D.L. (2023). Development of γδ T Cells: Soldiers on the Front Lines of Immune Battles. In: Bosselut, R., Vacchio, M.S. (eds) T-Cell Development. Methods in Molecular Biology, vol 2580. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2740-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2740-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2739-6

  • Online ISBN: 978-1-0716-2740-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics