Skip to main content

Large-Scale Isolation of Mouse Thymic Epithelial Cells

  • Protocol
  • First Online:
T-Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2580))

Abstract

The thymus is compartmentalized into the cortex and the medulla. Cortical and medullary thymic epithelial cells (TECs) characterize T cell-producing and T cell-selecting functions of cortical and medullary microenvironments in the thymus. Enzymatic digestion of the thymus and flow cytometric isolation of TECs and their subpopulations are useful for molecular and cellular characterization of TECs. However, the cellularity of cTECs and mTECs isolated from mouse thymus is limited. In this chapter, we describe the method for isolation of a large number of TECs using enlarged mouse thymus, which enables biochemical and proteomic analysis of TEC subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petrie HT, Zúñiga-Pflücker JC (2007) Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 25:649–679

    Article  CAS  PubMed  Google Scholar 

  2. Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009) Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 9:833–844

    Article  CAS  PubMed  Google Scholar 

  3. Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33:256–263

    Article  CAS  PubMed  Google Scholar 

  4. Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, David E, Machado A, Chuprin A, Tóth B, Goldberg O, Itzkovitz S, Taylor N, Jay P, Zimmermann VS, Abramson J, Amit I (2018) Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559:622–626

    Article  CAS  PubMed  Google Scholar 

  5. Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR, Wang H, Rattay K, Khan IS, Metzger TC, Pollack JL, Fries AC, Lwin WW, Wigton EJ, Parent AV, Kyewski B, Erle DJ, Hogquist KA, Steinmetz LM, Locksley RM, Anderson MS (2018) Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 559:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cowan EJ, Malin J, Zhao Y, Seedhom MO, Harly C, Ohigashi I, Kelly M, Takahama Y, Yewdell JW, Cam M, Bhandoola A (2019) Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth. Nat Commun 10:5498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dhalla F, Baran-Gale J, Maio S, Chappell L, Holländer GA, Ponting CP (2020) Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. EMBO J 39:e101828

    Article  CAS  PubMed  Google Scholar 

  8. Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Küchler R, Huber W, Kyewski B, Steinmetz LM (2015) Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol 16:933–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meredith M, Zemmour D, Mathis D, Benoist C (2015) Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat Immunol 16:942–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakata M, Ohigashi I, Takahama Y (2018) Cellularity of thymic epithelial cells in the postnatal mouse. J Immunol 200:1382–1388

    Article  CAS  PubMed  Google Scholar 

  11. Venables T, Griffith AV, DeAraujo A, Petrie HT (2019) Dynamic changes in epithelial cell morphology control thymic organ size during atrophy and regeneration. Nat Commun 10:4402

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hirakawa M, Nagakubo D, Kanzler B, Avilov S, Krauth B, Happe C, Swann JB, Nusser A, Boehm T (2018) Fundamental parameters of the developing thymic epithelium in the mouse. Sci Rep 8:11095

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nakagawa Y, Ohigashi I, Nitta T, Sakata M, Tanaka K, Murata S, Kanagawa O, Takahama Y (2012) Thymic nurse cells provide microenvironment for secondary TCRa rearrangement in cortical thymocytes. Proc Natl Acad Sci U S A 109:20572–20577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robles AI, Larcher F, Whalin RB, Murillas R, Richie E, Gimenez-Conti IB, Jorcano JL, Conti CJ (1996) Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc Natl Acad Sci U S A 93:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klug D, Carter C, Crouch E, Roop D, Conti CJ, Richie ER (1998) Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci USA 95:11822–11827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohigashi I, Tanaka Y, Kondo K, Fujimori S, Kondo H, Palin AC, Hoffmann V, Kozai M, Matsushita Y, Uda S, Motosugi R, Hamazaki J, Kubota H, Murata S, Tanaka K, Katagiri T, Kosako H, Takahama Y (2019) Trans-omics impact of thymoproteasome in cortical thymic epithelial cells. Cell Rep 29:2901–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohigashi I, Takahama Y (2016) Flow cytometry analysis of thymic epithelial cells and their subpopulations. Methods Mol Biol 1323:65–73

    Article  CAS  PubMed  Google Scholar 

  18. Seach N, Wong K, Hammett M, Boyd RL, Chidgey AP (2012) Purified enzymes improve isolation and characterization of the adult thymic epithelium. J Immunol Methods 385:23–34

    Article  CAS  PubMed  Google Scholar 

  19. Desanti GE, Cowan JE, Baik S, Parnell SM, White AJ, Penninger JM, Lane PJ, Jenkinson EJ, Jenkinson WE, Anderson G (2012) Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla. J Immunol 189:5519–5526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alison Jacques for reading the manuscript. The research was supported in part by the Intramural Research Program of the NIH, NCI, and EIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousuke Takahama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ohigashi, I., Matsuda-Lennikov, M., Takahama, Y. (2023). Large-Scale Isolation of Mouse Thymic Epithelial Cells. In: Bosselut, R., Vacchio, M.S. (eds) T-Cell Development. Methods in Molecular Biology, vol 2580. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2740-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2740-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2739-6

  • Online ISBN: 978-1-0716-2740-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics