Skip to main content

Peptide Microarrays for Studying Autoantibodies in Neurological Disease

  • Protocol
  • First Online:
Peptide Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2578))

Abstract

Antibody-mediated neurological diseases constitute an emerging clinical entity that remains to be fully explored. Recent studies identified autoantibodies that directly confer pathogenicity, and it was shown that in these cases immunotherapies can result in profound positive patient responses. These advances highlight the urgent need for improved means to effectively screen patient samples for novel autoantibodies (aAbs) and their subsequent characterization. Here, we discuss challenges and opportunities for peptide microarrays to contribute to the identification, mapping, and characterization of the underlying monospecific disease-defining binding surfaces. We outline control experiments, workflow modifications and bioinformatic filtering methods that enhance the predictive power of array-based studies. Further, we highlight experimental and computer-based display approaches that have the potential to expand the use of synthetic microarrays over the detection of discontinuous epitopes. Knowledge over the autoantibody epitopes in neurological disease will enhance our understanding of the pathological mechanisms and thereby potentially contribute to novel diagnostic approaches or even innovative antigen-specific treatments that avoid the serious adverse effects seen with currently used immunosuppressive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pollak TA, Lennox BN, Muller S et al (2020) Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 7:93–108. https://doi.org/10.1016/S2215-0366(19)30290-1

    Article  PubMed  Google Scholar 

  2. Graus F, Titulaer MJ, Balu R et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15:391–404. https://doi.org/10.1016/S1474-4422(15)00401-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ludwig RJ, Vanhoorelbeke K, Leypoldt F et al (2017) Mechanisms of autoantibody-induced pathology. Front Immunol 8:603. https://doi.org/10.3389/fimmu.2017.00603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fichtner ML, Jiang R, Bourke A et al (2020) Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front Immunol 11:776. https://doi.org/10.3389/fimmu.2020.00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hecker M, Fitzner B, Wendt M et al (2016) High-density peptide microarray analysis of IgG autoantibody reactivities in serum and cerebrospinal fluid of multiple sclerosis patients. Mol Cell Proteomics 15:1360–1380. https://doi.org/10.1074/mcp.M115.051664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hansson M, Mathsson L, Schlederer T et al (2012) Validation of a multiplex chip-based assay for the detection of autoantibodies against citrullinated peptides. Arthritis Res Ther 14(5):R201. https://doi.org/10.1186/ar4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joseph CG, Darrah E, Shah AA et al (2014) Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343:152–157. https://doi.org/10.1126/science.1246886

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Li H, Hu Q et al (2018) Detection of epitopes in systemic lupus erythematosus using peptide microarray. Mol Med Rep 17(5):6533–6541. https://doi.org/10.3892/mmr.2018.8710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prüss H (2021) Autoantibodies in neurological disease. Nat Rev Immunol 21:798–813. https://doi.org/10.1038/s41577-021-00543-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peysselon F, Xue B, Uversky VN, Ricard-Blum S (2011) Intrinsic disorder of the extracellular matrix. Mol BioSyst 7:3353–3365. https://doi.org/10.1039/C1MB05316G

    Article  CAS  PubMed  Google Scholar 

  11. Ng JKM, Malotka J, Kawakami N et al (2012) Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 79:2241. https://doi.org/10.1212/WNL.0b013e31827689ad

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stengel H, Vural A, Brunder AM et al (2019) Anti–pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy. Neurol Neuroimmunol Neuroinflamm 6:e603. https://doi.org/10.1212/NXI.0000000000000603

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castillo-Gómez E, Oliveira B, Tapken D et al (2017) All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class. Mol Psychiatry 22:1776–1784. https://doi.org/10.1038/mp.2016.125

    Article  CAS  PubMed  Google Scholar 

  14. Bondos SE, Dunker AK, Uversky VN (2021) On the roles of intrinsically disordered proteins and regions in cell communication and signaling. Cell Commun Signal 19:88. https://doi.org/10.1186/s12964-021-00774-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacRaild CA, Richards JS, Anders RF, Norton RS (2016) Antibody recognition of disordered antigens. Structure 24(1):148–157. https://doi.org/10.1016/j.str.2015.10.028

    Article  CAS  PubMed  Google Scholar 

  16. Rocchi A, Sacchetti S, De Fusco A et al (2019) Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death Dis 10:864. https://doi.org/10.1038/s41419-019-2106-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sokolove J, Bromberg R, Deane KD et al (2012) Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One 7:e35296. https://doi.org/10.1371/journal.pone.0035296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu H, Luo H, Yan M et al (2015) Autoantigen microarray for high-throughput autoantibody profiling in systemic lupus erythematosus. Genomics Proteomics Bioinformatics 13:210–218. https://doi.org/10.1016/j.gpb.2015.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  19. Appeltshauser L, Brunder AM, Heinius A et al (2020) Antiparanodal antibodies and IgG subclasses in acute autoimmune neuropathy. Neurol Neuroimmunol Neuroinflamm 7:e817. https://doi.org/10.1212/NXI.0000000000000817

    Article  PubMed  PubMed Central  Google Scholar 

  20. Akbar R, Robert PA, Pavlovic M et al (2021) A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Rep 34:108856. https://doi.org/10.1016/j.celrep.2021.108856

    Article  CAS  PubMed  Google Scholar 

  21. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hou Q, Stringer B, Waury K et al (2021) SeRenDIP-CE: sequence-based interface prediction for conformational epitopes. Bioinformatics 37:3421–3427. https://doi.org/10.1093/bioinformatics/btab321

    Article  CAS  PubMed Central  Google Scholar 

  23. Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29. https://doi.org/10.1093/nar/gkx346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M (2021) Deimmunization of protein therapeutics – recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J 19:315–329. https://doi.org/10.1016/j.csbj.2020.12.024

    Article  CAS  PubMed  Google Scholar 

  25. Lo YT, Shih TC, Pai TW et al (2021) Conformational epitope matching and prediction based on protein surface spiral features. BMC Genomics 22:116. https://doi.org/10.1186/s12864-020-07303-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hansen LB, Buus S, Schafer-Nielsen C (2013) Identification and mapping of linear antibody epitopes in human serum albumin using high-density peptide arrays. PLoS One 8:e68902. https://doi.org/10.1371/journal.pone.0068902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zandian A, Forsstrom B, Häggmark-Månberg A et al (2017) Whole-proteome peptide microarrays for profiling autoantibody repertoires within multiple sclerosis and narcolepsy. J Proteome Res 16:1300–1314. https://doi.org/10.1021/acs.jproteome.6b00916

    Article  CAS  PubMed  Google Scholar 

  28. Sola L, Gagni P, D’Annessa I et al (2018) Enhancing antibody serodiagnosis using a controlled peptide coimmobilization strategy. ACS Infect Dis 4:998–1006. https://doi.org/10.1021/acsinfecdis.8b00014

    Article  CAS  PubMed  Google Scholar 

  29. de Weers M, Tai YT, van der Veer MS et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186:1840. https://doi.org/10.4049/jimmunol.1003032

    Article  CAS  PubMed  Google Scholar 

  30. Niederfellner G, Lammens A, Mundigl O et al (2011) Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 118:358–367. https://doi.org/10.1182/blood-2010-09-305847

    Article  CAS  PubMed  Google Scholar 

  31. Demolombe V, de Brevern AG, Felicori L et al (2019) PEPOP 2.0: new approaches to mimic non-continuous epitopes. BMC Bioinformatics 20:387. https://doi.org/10.1186/s12859-019-2867-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Demolombe V, de Brevern AG, Molina F et al (2019) Benchmarking the PEPOP methods for mimicking discontinuous epitopes. BMC Bioinformatics 20:738. https://doi.org/10.1186/s12859-019-3189-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bourquard T, Musnier A, Puard V et al (2018) MAbTope: a method for improved epitope mapping. J Immunol 201:3096. https://doi.org/10.4049/jimmunol.1701722

    Article  CAS  PubMed  Google Scholar 

  34. Hernandez DP, Dittmar G (2021) Peptide array–based interactomics. Anal Bioanal Chem 413:5561–5566. https://doi.org/10.1007/s00216-021-03367-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dikmans A, Beutling U, Schmeisser E et al (2006) SC2: a novel process for manufacturing multipurpose high-density chemical microarrays. QSAR Comb Sci 25:1069–1080. https://doi.org/10.1002/qsar.200640130

    Article  CAS  Google Scholar 

  36. Schulte C, Khayenko V, Nordblom NF et al (2020) High-throughput determination of protein affinities using unmodified peptide libraries in nanomolar scale. iScience 24:101898. https://doi.org/10.1016/j.isci.2020.101898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Ma ML, Lei Q et al (2021) Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients. Cell Rep 34:108915–108915. https://doi.org/10.1016/j.celrep.2021.108915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parker Cates Z, Facciuolo A, Hogan D et al (2021) EPIphany—a platform for analysis and visualization of peptide immunoarray data. Front Bioinform 1:694324. https://doi.org/10.3389/fbinf.2021.694324

    Article  Google Scholar 

  39. Heiss K, Heidepriem J, Fischer N et al (2020) Rapid response to pandemic threats: immunogenic epitope detection of pandemic pathogens for diagnostics and vaccine development using peptide microarrays. J Proteome Res 19:4339–4354. https://doi.org/10.1021/acs.jproteome.0c00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Armangue T, Leypoldt F, Malaga I et al (2014) Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 75:317–323. https://doi.org/10.1002/ana.24083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Armangue T, Spatola M, Vlagea A et al (2018) Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 17:760–772. https://doi.org/10.1016/S1474-4422(18)30244-8

    Article  PubMed  PubMed Central  Google Scholar 

  42. Franke C, Ferse C, Kreye J et al (2021) High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun 93:415–419. https://doi.org/10.1016/j.bbi.2020.12.022

    Article  CAS  PubMed  Google Scholar 

  43. Bjornevik K, Cortese M, Healy BC et al (2022) Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375:296–301. https://doi.org/10.1126/science.abj8222

    Article  CAS  PubMed  Google Scholar 

  44. Ramirez-Celis A, Edmiston E, Schauer J et al (2020) Peptides of neuron specific enolase as potential ASD biomarkers: from discovery to epitope mapping. Brain Behav Immun 84:200–208. https://doi.org/10.1016/j.bbi.2019.12.002

    Article  CAS  PubMed  Google Scholar 

  45. Music M, Soosaipillai A, Batruch I et al (2019) A proteome-wide immuno-mass spectrometric identification of serum autoantibodies. Clin Proteomics 16:25. https://doi.org/10.1186/s12014-019-9246-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gunasekera S, Fernandes-Cerqueira C, Wennmalm S et al (2018) Stabilized cyclic peptides as scavengers of autoantibodies: neutralization of anticitrullinated protein/peptide antibodies in rheumatoid arthritis. ACS Chem Biol 13:1525–1535. https://doi.org/10.1021/acschembio.8b00118

    Article  CAS  PubMed  Google Scholar 

  47. Krienke C, Kolb L, Diken E et al (2021) A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371:145–153. https://doi.org/10.1126/science.aay3638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Interdisziplinäres Zentrum für Klinische Forschung (IZKF) of Würzburg, project number A-F-N-419 and the DFG (MA6957/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Michael Maric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Talucci, I., Maric, H.M. (2023). Peptide Microarrays for Studying Autoantibodies in Neurological Disease. In: Cretich, M., Gori, A. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 2578. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2732-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2732-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2731-0

  • Online ISBN: 978-1-0716-2732-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics