Abstract
Antibody-mediated neurological diseases constitute an emerging clinical entity that remains to be fully explored. Recent studies identified autoantibodies that directly confer pathogenicity, and it was shown that in these cases immunotherapies can result in profound positive patient responses. These advances highlight the urgent need for improved means to effectively screen patient samples for novel autoantibodies (aAbs) and their subsequent characterization. Here, we discuss challenges and opportunities for peptide microarrays to contribute to the identification, mapping, and characterization of the underlying monospecific disease-defining binding surfaces. We outline control experiments, workflow modifications and bioinformatic filtering methods that enhance the predictive power of array-based studies. Further, we highlight experimental and computer-based display approaches that have the potential to expand the use of synthetic microarrays over the detection of discontinuous epitopes. Knowledge over the autoantibody epitopes in neurological disease will enhance our understanding of the pathological mechanisms and thereby potentially contribute to novel diagnostic approaches or even innovative antigen-specific treatments that avoid the serious adverse effects seen with currently used immunosuppressive therapies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pollak TA, Lennox BN, Muller S et al (2020) Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 7:93–108. https://doi.org/10.1016/S2215-0366(19)30290-1
Graus F, Titulaer MJ, Balu R et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15:391–404. https://doi.org/10.1016/S1474-4422(15)00401-9
Ludwig RJ, Vanhoorelbeke K, Leypoldt F et al (2017) Mechanisms of autoantibody-induced pathology. Front Immunol 8:603. https://doi.org/10.3389/fimmu.2017.00603
Fichtner ML, Jiang R, Bourke A et al (2020) Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front Immunol 11:776. https://doi.org/10.3389/fimmu.2020.00776
Hecker M, Fitzner B, Wendt M et al (2016) High-density peptide microarray analysis of IgG autoantibody reactivities in serum and cerebrospinal fluid of multiple sclerosis patients. Mol Cell Proteomics 15:1360–1380. https://doi.org/10.1074/mcp.M115.051664
Hansson M, Mathsson L, Schlederer T et al (2012) Validation of a multiplex chip-based assay for the detection of autoantibodies against citrullinated peptides. Arthritis Res Ther 14(5):R201. https://doi.org/10.1186/ar4039
Joseph CG, Darrah E, Shah AA et al (2014) Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343:152–157. https://doi.org/10.1126/science.1246886
Li X, Li H, Hu Q et al (2018) Detection of epitopes in systemic lupus erythematosus using peptide microarray. Mol Med Rep 17(5):6533–6541. https://doi.org/10.3892/mmr.2018.8710
Prüss H (2021) Autoantibodies in neurological disease. Nat Rev Immunol 21:798–813. https://doi.org/10.1038/s41577-021-00543-w
Peysselon F, Xue B, Uversky VN, Ricard-Blum S (2011) Intrinsic disorder of the extracellular matrix. Mol BioSyst 7:3353–3365. https://doi.org/10.1039/C1MB05316G
Ng JKM, Malotka J, Kawakami N et al (2012) Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 79:2241. https://doi.org/10.1212/WNL.0b013e31827689ad
Stengel H, Vural A, Brunder AM et al (2019) Anti–pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy. Neurol Neuroimmunol Neuroinflamm 6:e603. https://doi.org/10.1212/NXI.0000000000000603
Castillo-Gómez E, Oliveira B, Tapken D et al (2017) All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class. Mol Psychiatry 22:1776–1784. https://doi.org/10.1038/mp.2016.125
Bondos SE, Dunker AK, Uversky VN (2021) On the roles of intrinsically disordered proteins and regions in cell communication and signaling. Cell Commun Signal 19:88. https://doi.org/10.1186/s12964-021-00774-3
MacRaild CA, Richards JS, Anders RF, Norton RS (2016) Antibody recognition of disordered antigens. Structure 24(1):148–157. https://doi.org/10.1016/j.str.2015.10.028
Rocchi A, Sacchetti S, De Fusco A et al (2019) Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death Dis 10:864. https://doi.org/10.1038/s41419-019-2106-z
Sokolove J, Bromberg R, Deane KD et al (2012) Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One 7:e35296. https://doi.org/10.1371/journal.pone.0035296
Zhu H, Luo H, Yan M et al (2015) Autoantigen microarray for high-throughput autoantibody profiling in systemic lupus erythematosus. Genomics Proteomics Bioinformatics 13:210–218. https://doi.org/10.1016/j.gpb.2015.09.001
Appeltshauser L, Brunder AM, Heinius A et al (2020) Antiparanodal antibodies and IgG subclasses in acute autoimmune neuropathy. Neurol Neuroimmunol Neuroinflamm 7:e817. https://doi.org/10.1212/NXI.0000000000000817
Akbar R, Robert PA, Pavlovic M et al (2021) A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Rep 34:108856. https://doi.org/10.1016/j.celrep.2021.108856
Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2
Hou Q, Stringer B, Waury K et al (2021) SeRenDIP-CE: sequence-based interface prediction for conformational epitopes. Bioinformatics 37:3421–3427. https://doi.org/10.1093/bioinformatics/btab321
Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29. https://doi.org/10.1093/nar/gkx346
Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M (2021) Deimmunization of protein therapeutics – recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J 19:315–329. https://doi.org/10.1016/j.csbj.2020.12.024
Lo YT, Shih TC, Pai TW et al (2021) Conformational epitope matching and prediction based on protein surface spiral features. BMC Genomics 22:116. https://doi.org/10.1186/s12864-020-07303-5
Hansen LB, Buus S, Schafer-Nielsen C (2013) Identification and mapping of linear antibody epitopes in human serum albumin using high-density peptide arrays. PLoS One 8:e68902. https://doi.org/10.1371/journal.pone.0068902
Zandian A, Forsstrom B, Häggmark-Månberg A et al (2017) Whole-proteome peptide microarrays for profiling autoantibody repertoires within multiple sclerosis and narcolepsy. J Proteome Res 16:1300–1314. https://doi.org/10.1021/acs.jproteome.6b00916
Sola L, Gagni P, D’Annessa I et al (2018) Enhancing antibody serodiagnosis using a controlled peptide coimmobilization strategy. ACS Infect Dis 4:998–1006. https://doi.org/10.1021/acsinfecdis.8b00014
de Weers M, Tai YT, van der Veer MS et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186:1840. https://doi.org/10.4049/jimmunol.1003032
Niederfellner G, Lammens A, Mundigl O et al (2011) Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 118:358–367. https://doi.org/10.1182/blood-2010-09-305847
Demolombe V, de Brevern AG, Felicori L et al (2019) PEPOP 2.0: new approaches to mimic non-continuous epitopes. BMC Bioinformatics 20:387. https://doi.org/10.1186/s12859-019-2867-5
Demolombe V, de Brevern AG, Molina F et al (2019) Benchmarking the PEPOP methods for mimicking discontinuous epitopes. BMC Bioinformatics 20:738. https://doi.org/10.1186/s12859-019-3189-3
Bourquard T, Musnier A, Puard V et al (2018) MAbTope: a method for improved epitope mapping. J Immunol 201:3096. https://doi.org/10.4049/jimmunol.1701722
Hernandez DP, Dittmar G (2021) Peptide array–based interactomics. Anal Bioanal Chem 413:5561–5566. https://doi.org/10.1007/s00216-021-03367-8
Dikmans A, Beutling U, Schmeisser E et al (2006) SC2: a novel process for manufacturing multipurpose high-density chemical microarrays. QSAR Comb Sci 25:1069–1080. https://doi.org/10.1002/qsar.200640130
Schulte C, Khayenko V, Nordblom NF et al (2020) High-throughput determination of protein affinities using unmodified peptide libraries in nanomolar scale. iScience 24:101898. https://doi.org/10.1016/j.isci.2020.101898
Li Y, Ma ML, Lei Q et al (2021) Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients. Cell Rep 34:108915–108915. https://doi.org/10.1016/j.celrep.2021.108915
Parker Cates Z, Facciuolo A, Hogan D et al (2021) EPIphany—a platform for analysis and visualization of peptide immunoarray data. Front Bioinform 1:694324. https://doi.org/10.3389/fbinf.2021.694324
Heiss K, Heidepriem J, Fischer N et al (2020) Rapid response to pandemic threats: immunogenic epitope detection of pandemic pathogens for diagnostics and vaccine development using peptide microarrays. J Proteome Res 19:4339–4354. https://doi.org/10.1021/acs.jproteome.0c00484
Armangue T, Leypoldt F, Malaga I et al (2014) Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 75:317–323. https://doi.org/10.1002/ana.24083
Armangue T, Spatola M, Vlagea A et al (2018) Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 17:760–772. https://doi.org/10.1016/S1474-4422(18)30244-8
Franke C, Ferse C, Kreye J et al (2021) High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun 93:415–419. https://doi.org/10.1016/j.bbi.2020.12.022
Bjornevik K, Cortese M, Healy BC et al (2022) Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375:296–301. https://doi.org/10.1126/science.abj8222
Ramirez-Celis A, Edmiston E, Schauer J et al (2020) Peptides of neuron specific enolase as potential ASD biomarkers: from discovery to epitope mapping. Brain Behav Immun 84:200–208. https://doi.org/10.1016/j.bbi.2019.12.002
Music M, Soosaipillai A, Batruch I et al (2019) A proteome-wide immuno-mass spectrometric identification of serum autoantibodies. Clin Proteomics 16:25. https://doi.org/10.1186/s12014-019-9246-0
Gunasekera S, Fernandes-Cerqueira C, Wennmalm S et al (2018) Stabilized cyclic peptides as scavengers of autoantibodies: neutralization of anticitrullinated protein/peptide antibodies in rheumatoid arthritis. ACS Chem Biol 13:1525–1535. https://doi.org/10.1021/acschembio.8b00118
Krienke C, Kolb L, Diken E et al (2021) A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371:145–153. https://doi.org/10.1126/science.aay3638
Acknowledgements
This work is supported by the Interdisziplinäres Zentrum für Klinische Forschung (IZKF) of Würzburg, project number A-F-N-419 and the DFG (MA6957/1-1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Talucci, I., Maric, H.M. (2023). Peptide Microarrays for Studying Autoantibodies in Neurological Disease. In: Cretich, M., Gori, A. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 2578. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2732-7_2
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2732-7_2
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2731-0
Online ISBN: 978-1-0716-2732-7
eBook Packages: Springer Protocols