Skip to main content

STORM Super-Resolution Imaging of CB1 Receptors in Tissue Preparations

Part of the Methods in Molecular Biology book series (MIMB,volume 2576)

Abstract

Single-molecule localization microscopy (SMLM) opened new possibilities to study the spatial arrangement of molecular distribution and disease-associated redistribution at a previously unprecedented resolution that was not achievable with optical microscopy approaches. Recent discoveries based on SMLM techniques uncovered specific nanoscale organizational principles of signaling proteins in several biological systems including the chemical synapses in the brain. Emerging data suggest that the spatial arrangement of the molecular players of the endocannabinoid system is also precisely regulated at the nanoscale level in synapses and in other neuronal and glial subcellular compartments. The precise nanoscale distribution pattern is likely to be important to subserve several specific signaling functions of this important messenger system in a cell-type- and subcellular domain-specific manner.

STochastic Optical Reconstruction Microscopy (STORM) is an especially suitable SMLM modality for cell-type-specific nanoscale molecular imaging due to its compatibility with traditional diffraction-limited microscopy approaches and classical staining methods. Here, we describe a detailed protocol for STORM imaging in mouse brain tissue samples with a focus on the CB1 cannabinoid receptor, one of the most abundant synaptic receptors in the brain. We also summarize important conceptual and methodical details that are essential for the valid interpretation of single-molecule localization microscopy data.

Key words

  • SMLM
  • Single-molecule localization microscopy
  • Super-resolution imaging
  • STORM
  • CB1 cannabinoid receptor
  • Endocannabinoid
  • Synapse
  • Neuron
  • Brain

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schermelleh L, Ferrand A, Huser T et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72–84

    CrossRef  CAS  PubMed  Google Scholar 

  2. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CrossRef  CAS  PubMed  Google Scholar 

  4. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    CrossRef  CAS  PubMed  Google Scholar 

  5. Baddeley D, Bewersdorf J (2017) Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu Rev Biochem 87:965–989

    CrossRef  PubMed  Google Scholar 

  6. Sauer M, Heilemann M (2017) Single-molecule localization microscopy in eukaryotes. Chem Rev 117:7478–7509

    CrossRef  CAS  PubMed  Google Scholar 

  7. Lelek M, Gyparaki MT, Beliu G et al (2021) Single-molecule localization microscopy. Nat Rev Methods Prim 1:1–39

    Google Scholar 

  8. MacGillavry HD, Song Y, Raghavachari S, Blanpied TA (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic ampa receptors. Neuron 78:615–622

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nair D, Hosy E, Petersen JD et al (2013) Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in Nanodomains regulated by PSD95. J Neurosci 33:13204–13224

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trotter JH, Hao J, Maxeiner S et al (2019) Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters. J Cell Biol 218:2677–2698

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang A-H, Chen H, Li TP et al (2016) A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536:210–214

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biederer T, Kaeser PS, Blanpied TA (2017) Transcellular nanoalignment of synaptic function. Neuron 96:680–696

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930

    CrossRef  CAS  PubMed  Google Scholar 

  14. Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 35:529–558

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kano M, Ohno-Shosaku T, Hashimotodani Y et al (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380

    CrossRef  CAS  PubMed  Google Scholar 

  16. Jung KM, Sepers M, Henstridge CM et al (2012) Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun 3:1080

    CrossRef  PubMed  Google Scholar 

  17. Dudok B, Barna L, Ledri M et al (2015) Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci 18:75–86

    CrossRef  CAS  PubMed  Google Scholar 

  18. Barna L, Dudok B, Miczán V et al (2016) Correlated confocal and super-resolution imaging by VividSTORM. Nat Protoc 11:163–183

    CrossRef  CAS  PubMed  Google Scholar 

  19. Zhou R, Han B, Xia C, Zhuang X (2019) Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons. Science 365:929–934

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, Yang J, Tian C et al (2020) Organized cannabinoid receptor distribution in neurons revealed by super-resolution fluorescence imaging. Nat Commun 11:5699

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456

    CrossRef  CAS  PubMed  Google Scholar 

  22. Busquets-Garcia A, Bains J, Marsicano G (2018) CB1 receptors signaling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology 43:4–20

    CrossRef  CAS  PubMed  Google Scholar 

  23. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592

    CrossRef  CAS  PubMed  Google Scholar 

  24. Navarrete M, Díez A, Araque A (2014) Astrocytes in endocannabinoid signalling. Philos Trans R Soc B Biol Sci 369:20130599

    CrossRef  Google Scholar 

  25. Metna-Laurent M, Marsicano G (2015) Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors. Glia 63:353–364

    CrossRef  PubMed  Google Scholar 

  26. Maroso M, Szabo GG, Kim HK et al (2016) Cannabinoid control of learning and memory through HCN channels. Neuron 89:1059–1073

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soltesz I, Alger BE, Kano M et al (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16:264–277

    CrossRef  CAS  PubMed  Google Scholar 

  28. Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chemie – Int Ed 47:6172–6176

    CrossRef  CAS  Google Scholar 

  29. Endesfelder U, Heilemann M (2015) Direct stochastic optical reconstruction microscopy (dSTORM). Methods Mol Biol 1251:263–276

    CrossRef  CAS  PubMed  Google Scholar 

  30. Fukudome Y, Ohno-Shosaku T, Matsui M et al (2004) Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M 2 -mediated direct suppression and M 1/M 3 -mediated indirect suppression through endocannabinoid signalling. Eur J Neurosci 19:2682–2692

    CrossRef  PubMed  Google Scholar 

  31. Lehmann M, Lichtner G, Klenz H, Schmoranzer J (2016) Novel organic dyes for multicolor localization-based super-resolution microscopy. J Biophotonics 9:161–170

    CrossRef  CAS  PubMed  Google Scholar 

  32. Younts TJ, Monday HR, Dudok B et al (2016) Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92:479–492

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dani A, Huang B, Bergan J et al (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68:843–856

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jimenez A, Friedl K, Leterrier C (2020) About samples, giving examples: optimized single molecule localization microscopy. Methods 174:100–114

    CrossRef  CAS  PubMed  Google Scholar 

  35. van de Linde S, Löschberger A, Klein T et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    CrossRef  PubMed  Google Scholar 

  36. Diekmann R, Kahnwald M, Schoenit A et al (2020) Optimizing imaging speed and excitation intensity for single-molecule localization microscopy. Nat Methods 17:909–912

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8:279–280

    CrossRef  CAS  PubMed  Google Scholar 

  38. Wu Y-L, Tschanz A, Krupnik L, Ries J (2020) Quantitative data analysis in single-molecule localization microscopy. Trends Cell Biol 30:837–885

    CrossRef  CAS  PubMed  Google Scholar 

  39. Khater IM, Nabi IR, Hamarneh G (2020) A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns 1:100038

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nicovich PR, Owen DM, Gaus K (2017) Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat Protoc 12:453–461

    CrossRef  CAS  PubMed  Google Scholar 

  41. Bohrer CH, Yang X, Thakur S et al (2021) A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat Methods 18:669–677

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crossman DJ, Hou Y, Jayasinghe I et al (2015) Combining confocal and single molecule localisation microscopy: a correlative approach to multi-scale tissue imaging. Methods 88:98–108

    CrossRef  CAS  PubMed  Google Scholar 

  43. Inavalli VVGK, Lenz MO, Butler C et al (2019) A super-resolution platform for correlative live single-molecule imaging and STED microscopy. Nat Methods 16:1263–1268

    CrossRef  CAS  PubMed  Google Scholar 

  44. Shim S-H, Xia C, Zhong G et al (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci 109:13978–13983

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schlegel J, Sauer M (2021) Superresolution microscopy of sphingolipids. Methods Mol Biol 2187:303–311

    CrossRef  CAS  PubMed  Google Scholar 

  46. Lee SH, Ledri M, Tóth B et al (2015) Multiple forms of endocannabinoid and endovanilloid signaling regulate the tonic control of GABA release. J Neurosci 35:10039–10057

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  47. Igarashi M, Nozumi X, Wu LG et al (2018) New observations in neuroscience using superresolution microscopy. J Neurosci 38:9459–9467

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baddeley D, Cannell MB, Soeller C (2010) Visualization of localization microscopy data. Microsc Microanal 16:64–72

    CrossRef  CAS  PubMed  Google Scholar 

  49. Lorincz A, Nusser Z (2008) Specificity of immunoreactions: the importance of testing specificity in each method. J Neurosci 28:9083–9086

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mikhaylova M, Cloin BMC, Finan K et al (2015) Resolving bundled microtubules using anti-tubulin nanobodies. Nat Commun 6:7933

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  51. Prokop S, Ábrányi-Balogh P, Barti B et al (2021) PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells. Nat Commun 12:1–19

    CrossRef  Google Scholar 

  52. Sarott RC, Westphal MV, Pfaff P et al (2020) Development of high-specificity fluorescent probes to enable cannabinoid type 2 receptor studies in living cells. J Am Chem Soc 142:16953–16964

    CrossRef  CAS  PubMed  Google Scholar 

  53. Heller JP, Odii T, Zheng K, Rusakov DA (2020) Imaging tripartite synapses using super-resolution microscopy. Methods 174:81–90

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  54. Culley S, Albrecht D, Jacobs C et al (2018) Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15:263–266

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Frontier Program 129961 of the National Research, Development and Innovation Office, Hungary. I.K. holds the Naus Family Chair in Addiction Sciences in the Department of Psychological and Brain Sciences at Indiana University Bloomington, and his work is also supported by the National Institutes of Health (R01NS099457 and R01DA044925).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Katona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zöldi, M., Katona, I. (2023). STORM Super-Resolution Imaging of CB1 Receptors in Tissue Preparations. In: Maccarrone, M. (eds) Endocannabinoid Signaling. Methods in Molecular Biology, vol 2576. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2728-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2728-0_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2727-3

  • Online ISBN: 978-1-0716-2728-0

  • eBook Packages: Springer Protocols