Skip to main content

Design, Construction, and Validation of Targeted Gene Activation with TREE System in Human Cells

  • Protocol
  • First Online:
Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2577))

  • 1797 Accesses

Abstract

Genome editing technologies can be diverted into artificial transcription activators. In particular, researchers have improved dCas9-based technologies by tandem-fusing or trans-accumulating effector domains. Previously, we developed a hierarchical effector accumulation system named “TREE,” enabling robust activation of target genes even when strongly silenced. In this chapter, we describe our protocol to design, construct, and validate the TREE-mediated target gene activation in cultured human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160. https://doi.org/10.1073/pnas.93.3.1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–150. https://doi.org/10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. https://doi.org/10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kunii A, Yamamoto T, Sakuma T (2020) Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cell Dev Biol Anim 56:359–366. https://doi.org/10.1007/s11626-020-00469-y

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. https://doi.org/10.1016/j.cell.2014.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW (2014) A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3:940–947. https://doi.org/10.1016/j.stemcr.2014.09.013

    Article  CAS  Google Scholar 

  7. Garcia-Bloj B, Moses C, Sgro A, Plani-Lam J, Arooj M, Duffy C, Thiruvengadam S, Sorolla A, Rashwan R, Mancera RL, Leisewitz A, Swift-Scanlan T, Corvalan AH, Blancafort P (2016) Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 7:60535–60554. https://doi.org/10.18632/oncotarget.11142

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, Haque SJ, Cecchi RJ, Kowal EJK, Buchthal J, Housden BE, Perrimon N, Collins JJ, Church G (2016) Comparison of Cas9 activators in multiple species. Nat Methods 13:563–567. https://doi.org/10.1038/nmeth.3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chavez A, Scheiman J, Vora S, Pruitt B, Tuttle M, Iyer E, Kiani S, Guzman C, Wiegand D, Ter-Ovanesyan D, Braff J, Davidsohn N, Weiss R, Aach J, Collins C, Church G (2015) Highly-efficient Cas9-mediated transcriptional programming. Nat Methods 12:326–328. https://doi.org/10.1101/012880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588. https://doi.org/10.1038/nature14136

    Article  CAS  PubMed  Google Scholar 

  11. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646. https://doi.org/10.1016/j.cell.2014.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kunii A, Hara Y, Takenaga M, Hattori N, Fukazawa T, Ushijima T, Yamamoto T, Sakuma T (2018) Three-component repurposed technology for enhanced expression: highly accumulable transcriptional activators via branched tag arrays. CRISPR J 1:337–347. https://doi.org/10.1089/crispr.2018.0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400. https://doi.org/10.1038/srep05400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakuma T, Sakamoto T, Yamamoto T (2017) All-in-one CRISPR-Cas9/Foki-dCas9 vector-mediated multiplex genome engineering in cultured cells. Methods Mol Biol 1498:41–56. https://doi.org/10.1007/978-1-4939-6472-7_4

    Article  CAS  PubMed  Google Scholar 

  15. Mohr SE, Hu Y, Ewen-campen B, Housden BE, Viswanatha R, Perrimon N (2016) CRISPR guide RNA design for research applications. FEBS J 283:3232–3238. https://doi.org/10.1111/febs.13777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123. https://doi.org/10.1093/BIOINFORMATICS/BTU743

    Article  CAS  PubMed  Google Scholar 

  17. Cradick TJ, Qiu P, Lee CM, Fine EJ, Bao G (2014) COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol Ther 3:e214. https://doi.org/10.1038/MTNA.2014.64

    Article  CAS  Google Scholar 

  18. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:219–232.e14. https://doi.org/10.1016/J.CELL.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moses C, Nugent F, Waryah CB, Garcia-Bloj B, Harvey AR, Blancafort P (2019) Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Mol Ther 14:287–300. https://doi.org/10.1016/J.OMTN.2018.12.003

    Article  CAS  Google Scholar 

  20. Di Chen C, Zeldich E, Li Y, Yuste A, Abraham CR (2018) Activation of the anti-aging and cognition-enhancing gene Klotho by CRISPR-dCas9 transcriptional effector complex. J Mol Neurosci 64:175. https://doi.org/10.1007/S12031-017-1011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript. This work was funded by Grant-in-Aid for JSPS Fellows (grant# 20J13292) to A.K. and Grant-in-Aid for Early-Career Scientists (grant# 19K16111) to T.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsushi Sakuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kunii, A., Yamamoto, T., Sakuma, T. (2023). Design, Construction, and Validation of Targeted Gene Activation with TREE System in Human Cells. In: Hatada, I., Horii, T. (eds) Epigenomics. Methods in Molecular Biology, vol 2577. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2724-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2724-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2723-5

  • Online ISBN: 978-1-0716-2724-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics