Skip to main content

Micromanipulator-Assisted Subretinal Transplantation of Human Photoreceptor Reporter Cell Suspensions into Mice

  • Protocol
  • First Online:
  • 688 Accesses

Part of the book series: Neuromethods ((NM,volume 189))

Abstract

Retinopathies marked by photoreceptor cell loss are the main cause of visual impairment and blindness in industrialized societies. Photoreceptor replacement strategies are examined as potential treatment options, for instance, by subretinal transplantation of photoreceptor-enriched cell suspensions, an approach which has shown beneficial effects in mouse models of retinal degeneration. As it is now possible to generate human photoreceptors through retinal organoid culture, preclinical research has shifted to human-into-mouse transplantations. Here, we describe a detailed method for human retinal organoid dissociation and fluorescent reporter-based sorting of photoreceptors. We introduce a transvitreal, micromanipulator-based transplantation technique to increase the quality and efficiency of cell injections into the mouse subretinal space, thereby increasing reproducibility and reducing experimental animal numbers. Lastly, we use a local corticosteroid to prevent immune rejection of the grafted cells in this human-into-mouse xenotransplantation setting.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gasparini SJ, Llonch S, Borsch O et al (2019) Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res 69:1–37

    Article  CAS  Google Scholar 

  2. Pearson RA, Barber AC, Rizzi M et al (2012) Restoration of vision after transplantation of photoreceptors. Nature 485:99–103

    Article  CAS  Google Scholar 

  3. Santos-Ferreira T, Postel K, Stutzki H et al (2015) Daylight vision repair by cell transplantation. Stem Cells 33:79–90

    Article  CAS  Google Scholar 

  4. Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    Article  CAS  Google Scholar 

  5. Llonch S, Carido M, Ader M (2018) Organoid technology for retinal repair. Dev Biol 433:132–143

    Article  CAS  Google Scholar 

  6. Cowan CS, Renner M, De Gennaro M et al (2020) Cell types of the human retina and its organoids at single-cell resolution. Cell 182:1623–1640.e34

    Article  CAS  Google Scholar 

  7. Gagliardi G, Ben M’Barek K, Chaffiol A et al (2018) Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids. Stem Cell Rep 11:665–680

    Article  CAS  Google Scholar 

  8. Welby E, Lakowski J, Di Foggia V et al (2017) Isolation and comparative transcriptome analysis of human fetal and iPSC-derived cone photoreceptor cells. Stem Cell Rep 9:1898–1915

    Article  CAS  Google Scholar 

  9. Gonzalez-Cordero A, Kruczek K, Naeem A et al (2017) Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep 9:820–837

    Article  Google Scholar 

  10. Ribeiro J, Procyk CA, West EL et al (2021) Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 35. https://doi.org/10.1016/j.celrep.2021.109022

  11. Phillips MJ, Jiang P, Howden S et al (2018) A novel approach to single cell RNA-sequence analysis facilitates in silico gene reporting of human pluripotent stem cell-derived retinal cell types. Stem Cells 36:313–324

    Article  CAS  Google Scholar 

  12. Gasparini SJ, Tessmer K, Reh M et al (2022) Transplanted human cones incorporate into the retina and function in a murine cone degeneration model. J Clin Invest 132(12):e154619

    Google Scholar 

  13. Qi Y, Dai X, Zhang H et al (2015) Trans-corneal subretinal injection in mice and its effect on the function and morphology of the retina. PLoS One 10:e0136523

    Article  Google Scholar 

  14. Zeng R, Zhang Y, Shi F et al (2012) A novel experimental mouse model of retinal detachment: complete functional and histologic recovery of the retina. Invest Ophthalmol Vis Sci 53:1685–1695

    Article  Google Scholar 

  15. Santos-Ferreira TF, Borsch O, Ader M (2017) Rebuilding the missing part—a review on photoreceptor transplantation. Front Syst Neurosci 10:105

    Article  Google Scholar 

  16. Eberle D, Santos-Ferreira T, Grahl S et al (2014) Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina. J Vis Exp. https://doi.org/10.3791/50932

  17. Collin J, Zerti D, Queen R et al (2019) CRX expression in pluripotent stem cell-derived photoreceptors marks a transplantable subpopulation of early cones. Stem Cells 37:609–622

    Article  CAS  Google Scholar 

  18. Gaballa SA, Kompella UB, Elgarhy O et al (2021) Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res 11:866–893

    Article  CAS  Google Scholar 

  19. Völkner M, Zschätzsch M, Rostovskaya M et al (2016) Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Rep 6:525–538

    Article  Google Scholar 

  20. Völkner M, Pavlou M, Büning H et al (2021) Optimized adeno-associated virus vectors for efficient transduction of human retinal organoids. Hum Gene Ther 32(13–14):694–706

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF): ReSight - 01EK1613A to M.A and Deutsche Forschungsgemeinschaft (DFG): AD375/6-1, AD375/7-1 (within SPP2127) to M.A., and FZT 111 and EXC68. We thank Dr. Olivier Goureau (Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012, Paris, France) for providing the Crx-mCherry-iPSC line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Jane Gasparini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tessmer, K., Borsch, O., Ader, M., Gasparini, S.J. (2023). Micromanipulator-Assisted Subretinal Transplantation of Human Photoreceptor Reporter Cell Suspensions into Mice. In: Gopalakrishnan, J. (eds) Brain Organoid Research. Neuromethods, vol 189. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2720-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2720-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2719-8

  • Online ISBN: 978-1-0716-2720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics