Skip to main content

Visualization of 3D Organoids Through the Latest Advancements in Microscopy

  • Protocol
  • First Online:
Brain Organoid Research

Part of the book series: Neuromethods ((NM,volume 189))

Abstract

Organoids have enhanced our understanding of in vivo biological processes and the scaling from cells to tissues to organs. Modern advancements in organoids have achieved recapitulation of the complex processes in tissue morphogenesis, including genetic regulation of differentiation, cell migration, rearrangements, as well as large-scale morphological features. As these processes span different scales in space and time, there has also been a growing need for improvements in microscopy techniques that can capture relevant biological processes and their interaction with the local environment. Imaging three-dimensional tissues and organoids requires a careful understanding of the optical properties of the system and specialized sample preparation. Importantly, these properties have to be fine-tuned based on applications. Ongoing advancements in imaging technologies, particularly light-sheet microscopy, which excels in photo-gentleness and temporal resolution, have enabled researchers to study organ development in toto and have provided valuable insights into mechanisms and regulation of pathways linked to development and disease, among others. In this chapter, we review the current state-of-the-art microscopy techniques and sample preparation methods available for capturing biological processes in organoids across scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224. https://doi.org/10.1038/nrm1858

    Article  CAS  PubMed  Google Scholar 

  2. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677. https://doi.org/10.1126/science.1171643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker BM, Chen CS (2012) Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024. https://doi.org/10.1242/jcs.079509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. https://doi.org/10.1038/nature07935

    Article  CAS  PubMed  Google Scholar 

  5. Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56. https://doi.org/10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  6. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 345:1247125. https://doi.org/10.1126/science.1247125

    Article  CAS  PubMed  Google Scholar 

  7. Ji N (2017) Adaptive optical fluorescence microscopy. Nat Methods 14:374–380. https://doi.org/10.1038/nmeth.4218

    Article  CAS  PubMed  Google Scholar 

  8. Ding Z, Ren H, Zhao Y et al (2002) High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt Lett 27:243–245. https://doi.org/10.1364/OL.27.000243

    Article  PubMed  Google Scholar 

  9. Shimozawa T, Yamagata K, Kondo T et al (2013) Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging. Proc Natl Acad Sci 110(3399):3404. https://doi.org/10.1073/pnas.1216696110

    Article  Google Scholar 

  10. Rakotoson I, Delhomme B, Djian P et al (2019) Fast 3-D imaging of brain organoids with a new single-objective planar-illumination two-photon microscope. Front Neuroanat 13:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huisken J, Swoger J, Del Bene F et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Article  CAS  PubMed  Google Scholar 

  12. Golub I, Chebbi B, Golub J (2015) Toward the optical “magic carpet”: reducing the divergence of a light sheet below the diffraction limit. Opt Lett 40:5121–5124

    Article  PubMed  Google Scholar 

  13. Fadero TC, Gerbich TM, Rana K et al (2018) LITE microscopy: tilted light-sheet excitation of model organisms offers high resolution and low photobleaching. J Cell Biol 217:1869–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keller PJ, Stelzer EHK (2010) Digital scanned laser light sheet fluorescence microscopy. Cold Spring Harb Protoc 2010:pdb-top78

    Article  PubMed  Google Scholar 

  15. Planchon TA, Gao L, Milkie DE et al (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8:417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vettenburg T, Dalgarno HIC, Nylk J et al (2014) Light-sheet microscopy using an Airy beam. Nat Methods 11:541–544

    Article  CAS  PubMed  Google Scholar 

  17. Adhya D, Chennell G, Crowe JA et al (2021) Application of Airy beam light sheet microscopy to examine early neurodevelopmental structures in 3D hiPSC-derived human cortical spheroids. Mol Autism 12:1–18

    Article  CAS  Google Scholar 

  18. Chen B-C, Legant WR, Wang K et al (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sapoznik E, Chang B-J, Ju RJ et al (2020) A single-objective light-sheet microscope with 200 nm-scale resolution. bioRxiv. https://doi.org/10.1101/2020.04.07.030569

  20. Lin R, Kipreos ET, Zhu J et al (2021) Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics. Nat Commun 12:1–14

    CAS  Google Scholar 

  21. Débarre D, Botcherby EJ, Booth MJ, Wilson T (2008) Adaptive optics for structured illumination microscopy. Opt Express 16:9290–9305

    Article  PubMed  Google Scholar 

  22. Fraisier V, Clouvel G, Jasaitis A et al (2015) Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method. J Microsc 259:219–227

    Article  CAS  PubMed  Google Scholar 

  23. Azucena O, Crest J, Kotadia S et al (2011) Adaptive optics wide-field microscopy using direct wavefront sensing. Opt Lett 36:825–827

    Article  PubMed  Google Scholar 

  24. Vermeulen P, Muro E, Pons T et al (2011) Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers. J Biomed Opt 16:76019

    Article  Google Scholar 

  25. Liu T-L, Upadhyayula S, Milkie DE et al (2018) Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360:eaaq1392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kumar A, Wu Y, Christensen R et al (2014) Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat Protoc 9:2555–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dean KM, Palmer AE (2014) Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat Chem Biol 10:512–523. https://doi.org/10.1038/nchembio.1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bouchard MB, Voleti V, Mendes CS et al (2015) Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat Photonics 9:113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu Y, Wawrzusin P, Senseney J et al (2013) Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31:1032–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao M, Zhang H, Li Y et al (2014) Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy. Biomed Opt Express 5:1296–1308

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Lim YJ, Xu Q et al (2020) Raster adaptive optics for video rate aberration correction and large FOV multiphoton imaging. Biomed Opt Express 11:1032–1042

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sofroniew NJ, Flickinger D, King J, Svoboda K (2016) A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5:e14472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. McConnell G, Trägårdh J, Amor R et al (2016) A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. eLife 5:e18659

    Article  PubMed  PubMed Central  Google Scholar 

  34. Piksarv P, Marti D, Le T et al (2017) Integrated single-and two-photon light sheet microscopy using accelerating beams. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  35. York HM, Coyle J, Arumugam S (2020) To be more precise: the role of intracellular trafficking in development and pattern formation. Biochem Soc Trans 48:2051–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hussain SA, Kubo T, Hall N et al (2020) Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope. J Microsc. https://doi.org/10.1111/jmi.12976

  37. Hall N, Titlow J, Booth MJ, Dobbie IM (2020) Microscope-AOtools: a generalised adaptive optics implementation. Opt Express 28:28987–29003

    Article  PubMed  Google Scholar 

  38. Pozzi P, Quintavalla M, Wong AB et al (2020) Plug-and-play adaptive optics for commercial laser scanning fluorescence microscopes based on an adaptive lens. Opt Lett 45:3585–3588

    Article  CAS  PubMed  Google Scholar 

  39. He Z, Gerber T, Maynard A et al (2020) Lineage recording reveals dynamics of cerebral organoid regionalization. bioRxiv. https://doi.org/10.1101/2020.06.19.162032

  40. de Medeiros G, Ortiz R, Strnad P et al (2021) Multiscale light-sheet organoid imaging framework. bioRxiv. https://doi.org/10.1101/2021.05.12.443427

  41. Yu N, Genevet P, Kats MA et al (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337

    Article  CAS  PubMed  Google Scholar 

  42. Tuchin VV, Maksimova IL, Zimnyakov DA et al (1997) Light propagation in tissues with controlled optical properties. J Biomed Opt 2:401–417

    Article  CAS  PubMed  Google Scholar 

  43. Grist SM, Nasseri SS, Poon T et al (2016) On-chip clearing of arrays of 3-D cell cultures and micro-tissues. Biomicrofluidics 10:44107

    Article  CAS  Google Scholar 

  44. Feuchtinger A, Walch A, Dobosz M (2016) Deep tissue imaging: a review from a preclinical cancer research perspective. Histochem Cell Biol 146:781–806

    Article  CAS  PubMed  Google Scholar 

  45. Seo J, Choe M, Kim S-Y (2016) Clearing and labeling techniques for large-scale biological tissues. Mol Cells 39:439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cora V, Haderspeck J, Antkowiak L et al (2019) A cleared view on retinal organoids. Cells 8:391

    Article  CAS  PubMed Central  Google Scholar 

  47. van Ineveld RL, Ariese HCR, Wehrens EJ et al (2020) Single-cell resolution three-dimensional imaging of intact organoids. JoVE:e60709. https://doi.org/10.3791/60709

  48. Goldspink DA, Lu VB, Miedzybrodzka EL et al (2020) Labeling and characterization of human GLP-1-secreting L-cells in primary ileal organoid culture. Cell Rep 31:107833. https://doi.org/10.1016/j.celrep.2020.107833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lundvall H (1905) Weiteres über demonstration embryonaler Skelette. Anat Anz 27:520–523

    Google Scholar 

  50. Spalteholz W (1914) Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung. S. Hirzel

    Google Scholar 

  51. Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162:246–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Susaki EA, Ueda HR (2016) Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem Biol 23:137–157

    Article  CAS  PubMed  Google Scholar 

  53. McKey J, Cameron LA, Lewis D et al (2020) Combined iDISCO and CUBIC tissue clearing and lightsheet microscopy for in toto analysis of the adult mouse ovary. Biol Reprod 102:1080–1089

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hirshburg J, Choi B, Nelson JS, Yeh AT (2007) Correlation between collagen solubility and skin optical clearing using sugars. Lasers Surg Med 39:140–144

    Article  PubMed  Google Scholar 

  55. Tuchin VV (1997) Light scattering study of tissues. Physics-Uspekhi 40:495

    Article  Google Scholar 

  56. Rylander CG, Milner TE, Baranov SA, Nelson JS (2008) Mechanical tissue optical clearing devices: enhancement of light penetration in ex vivo porcine skin and adipose tissue. Lasers Surg Med 40:688–694

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xu X, Wang RK (2003) The role of water desorption on optical clearing of biotissue: studied with near infrared reflectance spectroscopy. Med Phys 30:1246–1253

    Article  PubMed  Google Scholar 

  58. Mao Z, Han Z, Wen X, et al (2009) Influence of glycerol with different concentrations on skin optical clearing and morphological changes in vivo. In: Photonics and optoelectronics meetings (POEM) 2008: fiber optic communication and sensors. International Society for Optics and Photonics, p 72781T

    Google Scholar 

  59. Feng W, Shi R, Ma N et al (2016) Skin optical clearing potential of disaccharides. J Biomed Opt 21:81207

    Article  Google Scholar 

  60. Yeh AT, Choi B, Nelson JS, Tromberg BJ (2003) Reversible dissociation of collagen in tissues. J Invest Dermatol 121:1332–1335

    Article  CAS  PubMed  Google Scholar 

  61. Ariel P (2017) A beginner’s guide to tissue clearing. Int J Biochem Cell Biol 84:35–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee E, Choi J, Jo Y et al (2016) ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep 6:1–15

    CAS  Google Scholar 

  63. Aoyagi Y, Kawakami R, Osanai H et al (2015) A rapid optical clearing protocol using 2, 2′-thiodiethanol for microscopic observation of fixed mouse brain. PLoS One 10:e0116280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kuwajima T, Sitko AA, Bhansali P et al (2013) ClearT: a detergent-and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140:1364–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tainaka K, Kuno A, Kubota SI et al (2016) Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu Rev Cell Dev Biol 32:713–741

    Article  CAS  PubMed  Google Scholar 

  66. Tainaka K, Murakami TC, Susaki EA et al (2018) Chemical landscape for tissue clearing based on hydrophilic reagents. Cell Rep 24:2196–2210

    Article  CAS  PubMed  Google Scholar 

  67. Costa EC, Moreira AF, de Melo-Diogo D, Correia IJ (2018) ClearT immersion optical clearing method for intact 3D spheroids imaging through confocal laser scanning microscopy. Opt Laser Technol 106:94–99

    Article  CAS  Google Scholar 

  68. Chen Y, Tsai Y-H, Liu Y-A et al (2013) Application of three-dimensional imaging to the intestinal crypt organoids and biopsied intestinal tissues. Sci World J 2013. https://doi.org/10.1155/2013/624342

  69. Dodt H-U, Leischner U, Schierloh A et al (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336

    Article  CAS  PubMed  Google Scholar 

  70. Jährling N, Becker K, Dodt H-U (2009) 3D-reconstruction of blood vessels by ultramicroscopy. Organogenesis 5:227–230

    Article  PubMed  PubMed Central  Google Scholar 

  71. Becker K, Jährling N, Saghafi S et al (2012) Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One 7:e33916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ertürk A, Bradke F (2013) High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp Neurol 242:57–64

    Article  PubMed  Google Scholar 

  73. Renier N, Wu Z, Simon DJ et al (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159:896–910

    Article  CAS  PubMed  Google Scholar 

  74. Pan C, Cai R, Quacquarelli FP et al (2016) Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 13:859–867. https://doi.org/10.1038/nmeth.3964

    Article  CAS  PubMed  Google Scholar 

  75. Yisong Q, Tingting Y, Jianyi X et al (2021) FDISCO: advanced solvent-based clearing method for imaging whole organs. Sci Adv 5:eaau8355. https://doi.org/10.1126/sciadv.aau8355

    Article  CAS  Google Scholar 

  76. Desmaison A, Guillaume L, Triclin S et al (2018) Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids. Sci Rep 8:8785. https://doi.org/10.1038/s41598-018-27060-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488. https://doi.org/10.1038/nn.2928

    Article  CAS  PubMed  Google Scholar 

  78. Susaki EA, Tainaka K, Perrin D et al (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739. https://doi.org/10.1016/j.cell.2014.03.042

    Article  CAS  PubMed  Google Scholar 

  79. Tainaka K, Kubota SI, Suyama TQ et al (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159:911–924. https://doi.org/10.1016/j.cell.2014.10.034

    Article  CAS  PubMed  Google Scholar 

  80. Kubota SI, Takahashi K, Nishida J et al (2017) Whole-body profiling of cancer metastasis with single-cell resolution. Cell Rep 20:236–250. https://doi.org/10.1016/j.celrep.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  81. Boutin ME, Hoffman-Kim D (2014) Application and assessment of optical clearing methods for imaging of tissue-engineered neural stem cell spheres. Tissue Eng Part C Methods 21:292–302. https://doi.org/10.1089/ten.tec.2014.0296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wörsdörfer P, Dalda N, Kern A et al (2019) Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep 9:15663. https://doi.org/10.1038/s41598-019-52204-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ke M-T, Nakai Y, Fujimoto S et al (2016) Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep 14:2718–2732. https://doi.org/10.1016/j.celrep.2016.02.057

    Article  CAS  PubMed  Google Scholar 

  84. Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nat Methods 10:508–513. https://doi.org/10.1038/nmeth.2481

    Article  CAS  PubMed  Google Scholar 

  85. Zhao S, Todorov MI, Cai R et al (2020) Cellular and molecular probing of intact human organs. Cell 180:796–812.e19. https://doi.org/10.1016/j.cell.2020.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim S-Y, Cho JH, Murray E et al (2015) Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc Natl Acad Sci 112:E6274–E6283. https://doi.org/10.1073/pnas.1510133112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Park Y-G, Sohn CH, Chen R et al (2019) Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol 37:73–83. https://doi.org/10.1038/nbt.4281

    Article  CAS  Google Scholar 

  88. Ku T, Guan W, Evans NB et al (2020) Elasticizing tissues for reversible shape transformation and accelerated molecular labeling. Nat Methods 17:609–613. https://doi.org/10.1038/s41592-020-0823-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang B, Treweek JB, Kulkarni RP et al (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945–958. https://doi.org/10.1016/j.cell.2014.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hama H, Hioki H, Namiki K et al (2015) ScaleS: an optical clearing palette for biological imaging. Nat Neurosci 18:1518–1529. https://doi.org/10.1038/nn.4107

    Article  CAS  PubMed  Google Scholar 

  91. Cai R, Pan C, Ghasemigharagoz A et al (2019) Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat Neurosci 22:317–327. https://doi.org/10.1038/s41593-018-0301-3

    Article  CAS  PubMed  Google Scholar 

  92. Yu T, Wen X, Luo Q et al (2011) Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing. J Biomed Opt 16:1–10. https://doi.org/10.1117/1.3621515

    Article  CAS  Google Scholar 

  93. Ke M-T, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16:1154–1161. https://doi.org/10.1038/nn.3447

    Article  CAS  PubMed  Google Scholar 

  94. Hou B, Zhang D, Zhao S et al (2015) Scalable and DiI-compatible optical clearance of the mammalian brain. Front Neuroanat 9:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Tsai PS, Kaufhold JP, Blinder P et al (2009) Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J Neurosci 29:14553–14570. https://doi.org/10.1523/JNEUROSCI.3287-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen L, Li G, Li Y et al (2017) UbasM: an effective balanced optical clearing method for intact biomedical imaging. Sci Rep 7:12218. https://doi.org/10.1038/s41598-017-12484-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Economo MN, Clack NG, Lavis LD et al (2016) A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5:e10566. https://doi.org/10.7554/eLife.10566

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhu J, Yu T, Li Y et al (2020) MACS: rapid aqueous clearing system for 3D mapping of intact organs. Adv Sci 7:1903185. https://doi.org/10.1002/advs.201903185

    Article  CAS  Google Scholar 

  99. Treweek JB, Chan KY, Flytzanis NC et al (2015) Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 10:1860–1896. https://doi.org/10.1038/nprot.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li W, Germain RN, Gerner MY (2017) Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc Natl Acad Sci 114:E7321–E7330. https://doi.org/10.1073/pnas.1708981114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Murray E, Cho JH, Goodwin D et al (2015) Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163:1500–1514. https://doi.org/10.1016/j.cell.2015.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Becker K, Jährling N, Kramer ER et al (2008) Ultramicroscopy: 3D reconstruction of large microscopical specimens. J Biophotonics 1:36–42. https://doi.org/10.1002/jbio.200710011

    Article  CAS  PubMed  Google Scholar 

  103. Klingberg A, Hasenberg A, Ludwig-Portugall I et al (2017) Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J Am Soc Nephrol 28(452):459. https://doi.org/10.1681/ASN.2016020232

    Article  Google Scholar 

  104. Kellner M, Heidrich M, Lorbeer R-A et al (2016) A combined method for correlative 3D imaging of biological samples from macro to nano scale. Sci Rep 6:35606. https://doi.org/10.1038/srep35606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ertürk A, Becker K, Jährling N et al (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7:1983–1995. https://doi.org/10.1038/nprot.2012.119

    Article  CAS  PubMed  Google Scholar 

  106. Ertürk A, Mauch CP, Hellal F et al (2012) Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 18:166–171. https://doi.org/10.1038/nm.2600

    Article  CAS  Google Scholar 

  107. Schwarz MK, Scherbarth A, Sprengel R et al (2015) Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS One 10:e0124650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Liebmann T, Renier N, Bettayeb K et al (2016) Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method. Cell Rep 16:1138–1152. https://doi.org/10.1016/j.celrep.2016.06.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jedlovszky P, Idrissi A (2008) Hydration free energy difference of acetone, acetamide, and urea. J Chem Phys 129:164501. https://doi.org/10.1063/1.2992584

    Article  CAS  PubMed  Google Scholar 

  110. Hua L, Zhou R, Thirumalai D, Berne BJ (2008) Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc Natl Acad Sci 105:16928–16933. https://doi.org/10.1073/pnas.0808427105

    Article  PubMed  PubMed Central  Google Scholar 

  111. Priyakumar UD, MacKerell AD (2010) Role of the adenine ligand on the stabilization of the secondary and tertiary interactions in the adenine riboswitch. J Mol Biol 396:1422–1438. https://doi.org/10.1016/j.jmb.2009.12.024

    Article  CAS  PubMed  Google Scholar 

  112. Barton KN, Buhr MM, Ballantyne JS (1999) Effects of urea and trimethylamineN-oxide on fluidity of liposomes and membranes of an elasmobranch. Am J Physiol Integr Comp Physiol 276:R397–R406. https://doi.org/10.1152/ajpregu.1999.276.2.R397

    Article  CAS  Google Scholar 

  113. Feng Y, Yu Z-W, Quinn PJ (2002) Effect of urea, dimethylurea, and tetramethylurea on the phase behavior of dioleoylphosphatidylethanolamine. Chem Phys Lipids 114:149–157. https://doi.org/10.1016/S0009-3084(01)00198-0

    Article  CAS  PubMed  Google Scholar 

  114. Silvestri L, Costantini I, Sacconi L, Pavone FS (2016) Clearing of fixed tissue: a review from a microscopist’s perspective. J Biomed Opt 21:81205. https://doi.org/10.1117/1.jbo.21.8.081205

    Article  Google Scholar 

  115. Fei C, Tillberg PW, Boyden ES (2015) Expansion microscopy. Science 347:543–548. https://doi.org/10.1126/science.1260088

    Article  CAS  Google Scholar 

  116. Ku T, Swaney J, Park J-Y et al (2016) Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol 34:973–981. https://doi.org/10.1038/nbt.3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Takahashi N, Hoshi H, Higa A et al (2019) An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells 8:481

    Article  CAS  PubMed Central  Google Scholar 

  118. Boothe T, Hilbert L, Heide M et al (2017) A tunable refractive index matching medium for live imaging cells, tissues and model organisms. eLife 6:e27240. https://doi.org/10.7554/eLife.27240

    Article  PubMed  PubMed Central  Google Scholar 

  119. Butcher EC, Weissman IL (1980) Direct fluorescent labeling of cells with fluorescein or rhodamine isothiocyanate. I. Technical aspects. J Immunol Methods 37:97–108. https://doi.org/10.1016/0022-1759(80)90195-7

    Article  CAS  PubMed  Google Scholar 

  120. Mujumdar SR, Mujumdar RB, Grant CM, Waggoner AS (1996) Cyanine-labeling reagents: sulfobenzindocyanine succinimidyl esters. Bioconjug Chem 7:356–362. https://doi.org/10.1021/bc960021b

    Article  CAS  PubMed  Google Scholar 

  121. Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91:1–13. https://doi.org/10.1084/jem.91.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu J-S, Liu W-M, Zhuang X-Q et al (2007) Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org Lett 9:33–36. https://doi.org/10.1021/ol062518z

    Article  CAS  PubMed  Google Scholar 

  123. Jung HS, Kwon PS, Lee JW et al (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012. https://doi.org/10.1021/ja808611d

    Article  CAS  PubMed  Google Scholar 

  124. Chalfie M (2009) GFP: lighting up life (Nobel lecture). Angew Chemie Int Ed 48:5603–5611. https://doi.org/10.1002/anie.200902040

    Article  CAS  Google Scholar 

  125. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. https://doi.org/10.1146/annurev.biochem.67.1.509

    Article  CAS  PubMed  Google Scholar 

  126. Mitra RD, Silva CM, Youvan DC (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173:13–17. https://doi.org/10.1016/0378-1119(95)00768-7

    Article  CAS  PubMed  Google Scholar 

  127. Bagley JA, Reumann D, Bian S et al (2017) Fused cerebral organoids model interactions between brain regions. Nat Methods 14:743–751. https://doi.org/10.1038/nmeth.4304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gasser SM (2002) Visualizing Chromatin Dynamics in Interphase Nuclei. Science 296:1412–1416. https://doi.org/10.1126/science.1067703

    Article  CAS  PubMed  Google Scholar 

  129. Zink D, Sadoni N, Stelzer E (2003) Visualizing chromatin and chromosomes in living cells. Methods 29:42–50. https://doi.org/10.1016/S1046-2023(02)00289-X

    Article  CAS  PubMed  Google Scholar 

  130. Hu M, Wang S (2021) Chromatin tracing: imaging 3D genome and Nucleome. Trends Cell Biol 31:5–8. https://doi.org/10.1016/j.tcb.2020.10.006

    Article  CAS  PubMed  Google Scholar 

  131. Prigent-Richard S, Cansell M, Vassy J et al (1998) Fluorescent and radiolabeling of polysaccharides: binding and internalization experiments on vascular cells. J Biomed Mater Res 40:275–281. https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<275::AID-JBM12>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  132. Meunier F, Wilkinson KJ (2002) Nonperturbing fluorescent labeling of polysaccharides. Biomacromolecules 3:857–864. https://doi.org/10.1021/bm0255241

    Article  CAS  PubMed  Google Scholar 

  133. Arnosti C (2003) Fluorescent derivatization of polysaccharides and carbohydrate-containing biopolymers for measurement of enzyme activities in complex media. J Chromatogr B 793:181–191. https://doi.org/10.1016/S1570-0232(03)00375-1

    Article  CAS  Google Scholar 

  134. Baxa U, Steinbacher S, Miller S et al (1996) Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide. Biophys J 71:2040–2048. https://doi.org/10.1016/S0006-3495(96)79402-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ye S, Wang C, Liu X et al (2006) New loading process and release properties of insulin from polysaccharide microcapsules fabricated through layer-by-layer assembly. J Control Release 112:79–87. https://doi.org/10.1016/j.jconrel.2006.01.015

    Article  CAS  PubMed  Google Scholar 

  136. Li X, Xu W (2011) TLR4-mediated activation of macrophages by the polysaccharide fraction from Polyporus umbellatus(pers.) Fries. J Ethnopharmacol 135:1–6. https://doi.org/10.1016/j.jep.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  137. Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901. https://doi.org/10.1093/emboj/19.5.892

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sahoo H (2012) Fluorescent labeling techniques in biomolecules: a flashback. RSC Adv 2:7017–7029. https://doi.org/10.1039/C2RA20389H

    Article  CAS  Google Scholar 

  139. Toseland CP (2013) Fluorescent labeling and modification of proteins. J Chem Biol 6:85–95. https://doi.org/10.1007/s12154-013-0094-5

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lomant AJ, Fairbanks G (1976) Chemical probes of extended biological structures: synthesis and properties of the cleavable protein cross-linking reagent [35S]dithiobis(succinimidyl propionate). J Mol Biol 104:243–261. https://doi.org/10.1016/0022-2836(76)90011-5

    Article  CAS  PubMed  Google Scholar 

  141. Laughlin ST, Bertozzi CR (2007) Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2:2930–2944. https://doi.org/10.1038/nprot.2007.422

    Article  CAS  PubMed  Google Scholar 

  142. Devaraj NK, Weissleder R, Hilderbrand SA (2008) Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug Chem 19:2297–2299. https://doi.org/10.1021/bc8004446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. GRIFFIN M, CASADIO R, BERGAMINI CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396. https://doi.org/10.1042/bj20021234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hodneland CD, Lee Y-S, Min D-H, Mrksich M (2002) Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc Natl Acad Sci U S A 99:5048–5052. https://doi.org/10.1073/pnas.072685299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tanaka T, Yamamoto T, Tsukiji S, Nagamune T (2008) Site-specific protein modification on living cells catalyzed by sortase. ChemBioChem 9:802–807. https://doi.org/10.1002/cbic.200700614

    Article  CAS  PubMed  Google Scholar 

  146. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382. https://doi.org/10.1021/cb800025k

    Article  CAS  PubMed  Google Scholar 

  147. Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104. https://doi.org/10.1038/nmeth735

    Article  CAS  PubMed  Google Scholar 

  148. Yin J, Lin AJ, Golan DE, Walsh CT (2006) Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat Protoc 1:280–285. https://doi.org/10.1038/nprot.2006.43

    Article  CAS  PubMed  Google Scholar 

  149. Hearps AC, Pryor MJ, Kuusisto HV et al (2007) The biarsenical dye Lumio™ exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells. J Fluoresc 17:593–597. https://doi.org/10.1007/s10895-007-0225-x

    Article  CAS  PubMed  Google Scholar 

  150. Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22:440–444. https://doi.org/10.1038/nbt954

    Article  CAS  PubMed  Google Scholar 

  151. Venken KJT, Kasprowicz J, Kuenen S et al (2008) Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Res 36:e114–e114. https://doi.org/10.1093/nar/gkn486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916. https://doi.org/10.1126/science.1068539

    Article  CAS  PubMed  Google Scholar 

  153. Campbell RE, Tour O, Palmer AE et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci 99:7877–7882. https://doi.org/10.1073/pnas.082243699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pédelacq J-D, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88. https://doi.org/10.1038/nbt1172

    Article  CAS  PubMed  Google Scholar 

  155. Shcherbo D, Murphy CS, Ermakova GV et al (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574. https://doi.org/10.1042/BJ20081949

    Article  CAS  PubMed  Google Scholar 

  156. Thorn K (2017) Genetically encoded fluorescent tags. Mol Biol Cell 28:848–857. https://doi.org/10.1091/mbc.e16-07-0504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fisher AC, DeLisa MP (2008) Laboratory evolution of fast-folding green fluorescent protein using secretory pathway quality control. PLoS One 3:e2351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Iizuka R, Yamagishi-Shirasaki M, Funatsu T (2011) Kinetic study of de novo chromophore maturation of fluorescent proteins. Anal Biochem 414:173–178. https://doi.org/10.1016/j.ab.2011.03.036

    Article  CAS  PubMed  Google Scholar 

  159. Shaner NC, Lin MZ, McKeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551. https://doi.org/10.1038/nmeth.1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163. https://doi.org/10.1152/physrev.00038.2009

    Article  CAS  PubMed  Google Scholar 

  161. Shcherbo D, Shemiakina II, Ryabova AV et al (2010) Near-infrared fluorescent proteins. Nat Methods 7:827–829. https://doi.org/10.1038/nmeth.1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cranfill PJ, Sell BR, Baird MA et al (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13:557–562. https://doi.org/10.1038/nmeth.3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Goedhart J, von Stetten D, Noirclerc-Savoye M et al (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751. https://doi.org/10.1038/ncomms1738

    Article  CAS  PubMed  Google Scholar 

  164. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572. https://doi.org/10.1038/nbt1037

    Article  CAS  PubMed  Google Scholar 

  165. Bajar BT, Wang ES, Lam AJ et al (2016) Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci Rep 6:20889. https://doi.org/10.1038/srep20889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bajar BT, Wang ES, Zhang S et al (2016) A guide to fluorescent protein FRET pairs. Sensors 16:1488

    Article  PubMed Central  CAS  Google Scholar 

  167. Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV (2011) An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One 6:e28674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Andrew JW, Te-Wen L, Bryan Z et al (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307. https://doi.org/10.1126/science.1207773

    Article  CAS  Google Scholar 

  169. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846. https://doi.org/10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  170. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963. https://doi.org/10.1038/nmeth.2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124:4154–4161. https://doi.org/10.1172/JCI72992

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chen B, Zou W, Xu H et al (2018) Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nat Commun 9:5065. https://doi.org/10.1038/s41467-018-07498-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shaner NC, Lambert GG, Chammas A et al (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10:407–409. https://doi.org/10.1038/nmeth.2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bindels DS, Haarbosch L, van Weeren L et al (2017) mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14:53–56. https://doi.org/10.1038/nmeth.4074

    Article  CAS  PubMed  Google Scholar 

  175. Rodriguez EA, Tran GN, Gross LA et al (2016) A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat Methods 13:763–769. https://doi.org/10.1038/nmeth.3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Shcherbakova DM, Baloban M, Emelyanov AV et al (2016) Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat Commun 7:1–12

    Article  CAS  Google Scholar 

  177. Ai H, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5:401–403. https://doi.org/10.1038/nmeth.1207

    Article  CAS  PubMed  Google Scholar 

  178. Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. In: Rietdorf J (ed) BT – microscopy techniques. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 245–265

    Chapter  Google Scholar 

  179. Cutrale F, Trivedi V, Trinh LA et al (2017) Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging. Nat Methods 14:149–152. https://doi.org/10.1038/nmeth.4134

    Article  CAS  PubMed  Google Scholar 

  180. Birey F, Andersen J, Makinson CD et al (2017) Assembly of functionally integrated human forebrain spheroids. Nature 545:54–59. https://doi.org/10.1038/nature22330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Leonetti MD, Sekine S, Kamiyama D et al (2016) A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc Natl Acad Sci 113:E3501–E3508. https://doi.org/10.1073/pnas.1606731113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Nakade S, Tsubota T, Sakane Y et al (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560. https://doi.org/10.1038/ncomms6560

    Article  CAS  PubMed  Google Scholar 

  183. Artegiani B, Hendriks D, Beumer J et al (2020) Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat Cell Biol 22:321–331. https://doi.org/10.1038/s41556-020-0472-5

    Article  CAS  PubMed  Google Scholar 

  184. Willems J, de Jong APH, Scheefhals N et al (2020) ORANGE: a CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 18:e3000665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Nie J, Hashino E (2017) Organoid technologies meet genome engineering. EMBO Rep 18:367–376. https://doi.org/10.15252/embr.201643732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Rios AC, Clevers H (2018) Imaging organoids: a bright future ahead. Nat Methods 15:24–26. https://doi.org/10.1038/nmeth.4537

    Article  CAS  PubMed  Google Scholar 

  187. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62. https://doi.org/10.1038/nature06293

    Article  CAS  PubMed  Google Scholar 

  188. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144. https://doi.org/10.1016/j.cell.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  189. Shimokawa M, Ohta Y, Nishikori S et al (2017) Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545:187–192. https://doi.org/10.1038/nature22081

    Article  CAS  PubMed  Google Scholar 

  190. Sugimoto S, Ohta Y, Fujii M et al (2018) Reconstruction of the human colon epithelium in vivo. Cell Stem Cell 22:171–176.e5. https://doi.org/10.1016/j.stem.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  191. El-Nachef D, Shi K, Beussman KM et al (2020) A rainbow reporter tracks single cells and reveals heterogeneous cellular dynamics among pluripotent stem cells and their differentiated derivatives. Stem Cell Rep 15:226–241. https://doi.org/10.1016/j.stemcr.2020.06.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debojyoti Chakraborty or Senthil Arumugam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, M., Rauthan, R., Chakraborty, D., Arumugam, S. (2023). Visualization of 3D Organoids Through the Latest Advancements in Microscopy. In: Gopalakrishnan, J. (eds) Brain Organoid Research. Neuromethods, vol 189. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2720-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2720-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2719-8

  • Online ISBN: 978-1-0716-2720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics