Skip to main content

Data Processing and Analysis in Liquid Chromatography–Mass Spectrometry-Based Targeted Metabolomics

  • Protocol
  • First Online:
Mass Spectrometry for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2571))

  • 1389 Accesses

Abstract

Mass spectrometry (MS)-based metabolomics provides high-dimensional datasets; that is, the data include various metabolite features. Data analysis begins by converting the raw data obtained from the MS to produce a data matrix (metabolite × concentrations). This is followed by several steps, such as peak integration, alignment of multiple data, metabolite identification, and calculation of metabolite concentrations. Each step yields the analytical results and the accompanying information used for the quality assessment of the anterior steps. Thus, the measurement quality can be analyzed through data processing. Here, we introduce a typical data processing procedure and describe a method to utilize the intermediate data as quality control. Subsequently, commonly used data analysis methods for metabolomics data, such as statistical analyses, are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amara CS, Vantaku V, Lotan Y, Putluri N (2019) Recent advances in the metabolomic study of bladder cancer. Expert Rev Proteomics 16(4):315–324. https://doi.org/10.1080/14789450.2019.1583105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gardner A, Parkes HG, Carpenter GH, So PW (2018) Developing and standardizing a protocol for quantitative proton nuclear magnetic resonance ((1)H NMR) spectroscopy of saliva. J Proteome Res 17(4):1521–1531. https://doi.org/10.1021/acs.jproteome.7b00847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lubes G, Goodarzi M (2018) GC–MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J Pharm Biomed Anal 147:313–322

    Article  CAS  Google Scholar 

  4. Zhang W, Ramautar R (2021) CE-MS for metabolomics: developments and applications in the period 2018–2020. Electrophoresis 42(4):381–401. https://doi.org/10.1002/elps.202000203

    Article  CAS  PubMed  Google Scholar 

  5. Roca M, Alcoriza MI, Garcia-Cañaveras JC, Lahoz A (2021) Reviewing the metabolome coverage provided by LC-MS: focus on sample preparation and chromatography-a tutorial. Anal Chim Acta 1147:38–55. https://doi.org/10.1016/j.aca.2020.12.025

    Article  CAS  PubMed  Google Scholar 

  6. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M (2012) Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinforma 7(1):96–108. https://doi.org/10.2174/157489312799304431

    Article  CAS  Google Scholar 

  7. Baima G, Iaderosa G, Citterio F, Grossi S, Romano F, Berta GN, Buduneli N, Aimetti M (2021) Salivary metabolomics for the diagnosis of periodontal diseases: a systematic review with methodological quality assessment. Metab Off J Metab Soc 17(1):1. https://doi.org/10.1007/s11306-020-01754-3

    Article  CAS  Google Scholar 

  8. Ishikawa S, Sugimoto M, Kitabatake K, Tu M, Sugano A, Yamamori I, Iba A, Yusa K, Kaneko M, Ota S, Hiwatari K, Enomoto A, Masaru T, Iino M (2017) Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids 49(4):761–770. https://doi.org/10.1007/s00726-017-2378-5

    Article  CAS  PubMed  Google Scholar 

  9. Nakajima T, Katsumata K, Kuwabara H, Soya R, Enomoto M, Ishizaki T, Tsuchida A, Mori M, Hiwatari K, Soga T, Tomita M, Sugimoto M (2018) Urinary polyamine biomarker panels with machine-learning differentiated colorectal cancers, benign disease, and healthy controls. Int J Mol Sci 19(3). https://doi.org/10.3390/ijms19030756

  10. Hirayama A, Sugimoto M, Suzuki A, Hatakeyama Y, Enomoto A, Harada S, Soga T, Tomita M, Takebayashi T (2015) Effects of processing and storage conditions on charged metabolomic profiles in blood. Electrophoresis 36(18):2148–2155. https://doi.org/10.1002/elps.201400600

    Article  CAS  PubMed  Google Scholar 

  11. Sugimoto M (2020) Salivary metabolomics for cancer detection. Expert Rev Proteomics 17(9):639–648. https://doi.org/10.1080/14789450.2020.1846524

    Article  CAS  PubMed  Google Scholar 

  12. Liebal UW, Phan ANT, Sudhakar M, Raman K, Blank LM (2020) Machine learning applications for mass spectrometry-based metabolomics. Meta 10(6). https://doi.org/10.3390/metabo10060243

  13. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269. https://doi.org/10.1038/nrm3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dunn WB, Wilson ID, Nicholls AW, Broadhurst D (2012) The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 4(18):2249–2264

    Article  CAS  Google Scholar 

  15. Shimizu H, Usui Y, Asakage M, Nezu N, Wakita R, Tsubota K, Sugimoto M, Goto H (2020) Serum metabolomic profiling of patients with non-infectious uveitis. J Clin Med 9(12). https://doi.org/10.3390/jcm9123955

  16. Nam SL, Mata AP, Dias RP, Harynuk JJ (2020) Towards standardization of data normalization strategies to improve urinary metabolomics studies by GC×GC-TOFMS. Meta 10(9). https://doi.org/10.3390/metabo10090376

  17. Misra BB (2021) New software tools, databases, and resources in metabolomics: updates from 2020. Metab Off J Metab Soc 17(5):49. https://doi.org/10.1007/s11306-021-01796-1

    Article  CAS  Google Scholar 

  18. Ren S, Hinzman AA, Kang EL, Szczesniak RD, Lu LJ (2015) Computational and statistical analysis of metabolomics data. Metab Off J Metab Soc 11(6):1492–1513

    CAS  Google Scholar 

  19. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab382

  20. Saigusa D, Okamura Y, Motoike IN, Katoh Y, Kurosawa Y, Saijyo R, Koshiba S, Yasuda J, Motohashi H, Sugawara J, Tanabe O, Kinoshita K, Yamamoto M (2016) Establishment of protocols for global metabolomics by LC-MS for biomarker discovery. PLoS One 11(8):e0160555. https://doi.org/10.1371/journal.pone.0160555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saito R, Sugimoto M, Hirayama A, Soga T, Tomita M, Takebayashi T (2021) Quality assessment of untargeted analytical data in a large-scale Metabolomic study. J Clin Med 10(9). https://doi.org/10.3390/jcm10091826

  22. Yamamoto H, Suzuki M, Matsuta R, Sasaki K, Kang M-I, Kami K, Tatara Y, Itoh K, Nakaji S (2021) Capillary electrophoresis mass spectrometry-based metabolomics of plasma samples from healthy subjects in a cross-sectional Japanese population study. Meta 11(5):314

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from JSPS KAKENHI (grant number 20B205) and JST OPERA (grant number JPMJOP1842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sugimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sugimoto, M., Aizawa, Y., Tomita, A. (2023). Data Processing and Analysis in Liquid Chromatography–Mass Spectrometry-Based Targeted Metabolomics. In: González-Domínguez, R. (eds) Mass Spectrometry for Metabolomics. Methods in Molecular Biology, vol 2571. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2699-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2699-3_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2698-6

  • Online ISBN: 978-1-0716-2699-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics