Skip to main content

Relative Time Inference Using Lateral Gene Transfers

  • Protocol
  • First Online:
Environmental Microbial Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2569))

Abstract

Many organisms are able to incorporate exogenous DNA into their genomes. This process, called lateral gene transfer (LGT), has the potential to benefit the recipient organism by providing useful coding sequences, such as antibiotic resistance genes or enzymes which expand the organism’s metabolic niche. For evolutionary biologists, LGTs have often been considered a nuisance because they complicate the reconstruction of the underlying species tree that many analyses aim to recover. However, LGT events between distinct organisms harbor information on the relative divergence time of the donor and recipient lineages. As a result transfers provide a novel and as yet mostly unexplored source of information to determine the order of divergence of clades, with the potential for absolute dating if linked to the fossil record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gogarten JP, Murphey RD, Olendzenski L. Horizontal gene transfer: pitfalls and promises. Biol Bull 1999;196: 359–61; discussion 361–2.

    Google Scholar 

  2. Szöllosi GJ, Tannier E, Lartillot N, Daubin V (2013) Lateral gene transfer from the dead. Syst Biol 62:386–397

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang J, Xu Y, Gogarten JP (2005) The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. Mol Biol Evol 22:2142–2146

    Article  CAS  PubMed  Google Scholar 

  4. Davín AA, Tannier E, Williams TA, Boussau B, Daubin V, Szöllősi GJ (2018) Gene transfers can date the tree of life. Nat Ecol Evol 2:904–909

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jacox E, Chauve C, Szöllősi GJ, Ponty Y, Scornavacca C (2016) ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics 32:2056–2058

    Article  CAS  PubMed  Google Scholar 

  6. Boussau B, Szöllosi GJ, Duret L, Gouy M, Tannier E, Daubin V (2013) Genome-scale coestimation of species and gene trees. Genome Res 23:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bansal MS, Alm EJ, Kellis M (2012) Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28:i283–i291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szöllősi GJ, Rosikiewicz W, Boussau B (2013) Efficient exploration of the space of reconciled gene trees. Syst Biol 62(6):901–912. Available: https://academic.oup.com/sysbio/article-abstract/62/6/901/1711882

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Oliveira ML, Posada D (2017) Species tree estimation from genome-wide data with guenomu. Methods Mol Biol 1525:461–478

    Article  Google Scholar 

  10. Szöllősi GJ, Davín AA, Tannier E, Daubin V, Boussau B (2015) Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Philos Trans R Soc Lond Ser B Biol Sci 370:20140335

    Article  Google Scholar 

  11. Morel B, Kozlov AM, Stamatakis A, Szöllősi GJ (2020) GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol Biol Evol 37:2763–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chauve C, Rafiey A, Davin AA, Scornavacca C, Veber P, Boussau B et al (2017) MaxTiC: fast ranking of a phylogenetic tree by maximum time consistency with lateral gene transfers. bioRxiv:127548. https://doi.org/10.1101/127548

  13. Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P et al (2021) A rooted phylogeny resolves early bacterial evolution. Science 372. https://doi.org/10.1126/science.abe0511

  14. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  15. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol:1647–1657. https://doi.org/10.1093/oxfordjournals.molbev.a025892

  16. Yang Z (2005) Bayesian inference in molecular phylogenetics. In: Gascuel O (ed) Mathematics of evolution and phylogeny. Oxford University Press, Oxford

    Google Scholar 

  17. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288

    Article  CAS  PubMed  Google Scholar 

  18. Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR et al (2016) RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst Biol 65:726–736

    Article  PubMed  PubMed Central  Google Scholar 

  19. Szöllősi GJ, Höhna S, Williams TA, Schrempf D, Daubin V, Boussau B Relative time constraints improve molecular dating. Syst Biol. https://doi.org/10.1101/2020.10.17.343889

  20. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  PubMed  PubMed Central  Google Scholar 

  22. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P (2020) A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 38:1079–1086

    Article  CAS  PubMed  Google Scholar 

  23. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A et al (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004

    Article  CAS  PubMed  Google Scholar 

  24. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  25. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  26. Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Criscuolo A, Gribaldo S (2010) BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–1109

    Article  CAS  PubMed  Google Scholar 

  29. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A et al (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285

    Article  CAS  PubMed  Google Scholar 

  31. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T (2014) ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30:i541–i548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szöllősi GJ, Boussau B, Abby SS (2012) Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc Natl Acad Sci USA 109(43):17513–17518. Available: https://www.pnas.org/content/109/43/17513.short

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ (2011) Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinform 12:124

    Article  Google Scholar 

  34. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Davín, A.A., Schrempf, D., Williams, T.A., Hugenholtz, P., Szöllősi, G.J. (2022). Relative Time Inference Using Lateral Gene Transfers. In: Luo, H. (eds) Environmental Microbial Evolution. Methods in Molecular Biology, vol 2569. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2691-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2691-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2690-0

  • Online ISBN: 978-1-0716-2691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics