Skip to main content

Reconstruction of State-Dependent Diversification: Integrating Phenotypic Traits into Molecular Phylogenies

  • Protocol
  • First Online:
Environmental Microbial Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2569))

  • 857 Accesses

Abstract

The relative contribution of speciation and extinction into current diversity is certainly unknown, but mathematical frameworks that use genetic information have been developed to provide estimates of these processes. To that end, it is necessary to reconstruct molecular phylogenetic trees which summarize ancestor-descendant relationships as well as the timing of evolutionary events (i.e., rates). Nevertheless, diversification models show poor fit when assuming that single rate of speciation/extinction is constant over time and across lineages: species exhibit such a great variation in features that it is unlikely they give birth and die at the same pace. The state-dependent diversification framework (SSE) reconciles the species phenotypic variation with heterogeneous rates of diversification observed in a clade. This family of models allows testing contrasting hypotheses on mode of speciation, trait evolution, and its influence on speciation/extinction regimes. Although microbial species richness outnumbers diversity in plants and animals, diversification models are underused in microbiology. Here, we introduce microbiologists to models that estimate diversification rates and provide a detailed description of SSE models. Besides theoretical principles underlying the method, we also show how SSE analysis should be set up in R. We use pH evolution in Thaumarchaeota to explain its evolutionary dynamic in the light of SSE model. We hope this chapter spurs the study of trait evolution and evolutionary outcomes in microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182. https://doi.org/10.1111/ele.12025

    Article  PubMed  Google Scholar 

  2. Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264. https://doi.org/10.1038/nature01312

    Article  CAS  PubMed  Google Scholar 

  3. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.x

    Article  Google Scholar 

  4. Pfennig KS, Pfennig DW (2009) Character displacement: ecological and reproductive responses to a common evolutionary problem. Q Rev Biol 84:253–276

    Article  PubMed  PubMed Central  Google Scholar 

  5. Connell JH, Hughes TP, Wallace CC et al (2004) A long-term study of competition and diversity of corals. Ecol Monogr 74:179–210

    Article  Google Scholar 

  6. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. https://doi.org/10.1186/1471-2148-7-214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morlon H (2014) Phylogenetic approaches for studying diversification. Ecol Lett 17:508–525. https://doi.org/10.1111/ele.12251

    Article  PubMed  Google Scholar 

  8. Etienne RS, Haegeman B, Stadler T et al (2012) Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc R Soc B Biol Sci 279:1300–1309. https://doi.org/10.1098/rspb.2011.1439

    Article  Google Scholar 

  9. Etienne RS, Haegeman B (2012) A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. Am Nat 180:E75–E89. https://doi.org/10.5061/dryad.sr927n43

    Article  PubMed  Google Scholar 

  10. Condamine FL, Rolland J, Morlon H (2019) Assessing the causes of diversification slowdowns: temperature-dependent and diversity-dependent models receive equivalent support. Ecol Lett 22:1900–1912. https://doi.org/10.1111/ele.13382

    Article  PubMed  Google Scholar 

  11. Louca S, Pennell MW (2020) Extant timetrees are consistent with a myriad of diversification histories. Nature. https://doi.org/10.1038/s41586-020-2176-1

  12. Nee S, Holmes EC, May RM et al (1994) Extinction rates can be estimated from molecular phylogenies. Philos Trans Biol Sci 344:77–82

    Article  CAS  Google Scholar 

  13. Gubry-Rangin C, Hai B, Quince C et al (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci U S A 108:21206–21211. https://doi.org/10.1073/pnas.1109000108

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tovilla-Sierra RD, Herrera-Alsina L, Bribiesca R, Arita HT (2019) The spatial analysis of biological interactions: morphological variation responding to the co-occurrence of competitors and resources. J Avian Biol 50:12. https://doi.org/10.1111/jav.02223

    Article  Google Scholar 

  15. Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on speciation and extinction. Syst Biol 56:701–710. https://doi.org/10.1080/10635150701607033

    Article  PubMed  Google Scholar 

  16. Rabosky DL, Goldberg EE (2015) Model inadequacy and mistaken inferences of trait-dependent speciation. Syst Biol 64:340–355. https://doi.org/10.1093/sysbio/syu131

    Article  CAS  PubMed  Google Scholar 

  17. Helmstetter AJ, Papadopulos AST, Igea J et al (2016) Viviparity stimulates diversification in an order of fish. Nat Commun 7:11271. https://doi.org/10.1038/ncomms11271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaverri P, Samuels GJ (2013) Evolution df habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67:2823–2837. https://doi.org/10.1111/evo.12169

    Article  PubMed  Google Scholar 

  19. Hanschen ER, Herron MD, Wiens JJ et al (2018) Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 72:386–398. https://doi.org/10.1111/evo.13394

    Article  PubMed  Google Scholar 

  20. Sriswasdi S, Yang CC, Iwasaki W (2017) Generalist species drive microbial dispersion and evolution. Nat Commun 8:1162. https://doi.org/10.1038/s41467-017-01265-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vďačný P, Rajter L, Shazib SUA et al (2017) Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group. Sci Rep 7:9918. https://doi.org/10.1038/s41598-017-09472-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bartoszek K, Majchrzak M, Sakowski S et al (2018) Predicting pathogenicity behavior in Escherichia coli population through a state dependent model and TRS profiling. PLoS Comput Biol 14. https://doi.org/10.1371/journal.pcbi.1005931

  23. Nakov T, Beaulieu JM, Alverson AJ (2019) Diatoms diversify and turn over faster in freshwater than marine environments. Evolution (N Y) 73:2497–2511. https://doi.org/10.1111/evo.13832

    Article  Google Scholar 

  24. Kerou M, Schleper C (2015) Bergey’s manual of systematics of archaea and bacteria

    Google Scholar 

  25. Gubry-Rangin C, Kratsch C, Williams TA et al (2015) Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proc Natl Acad Sci U S A 112:9370–9375. https://doi.org/10.5061/dryad.0nv00

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheridan PO, Raguideau S, Quince C et al (2020) Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat Commun 11:5494. https://doi.org/10.1038/s41467-020-19132-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Herrera-Alsina L, van Els P, Etienne RS (2019) Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst Biol 68:317–328. https://doi.org/10.1093/sysbio/syy057

    Article  PubMed  Google Scholar 

  28. Beaulieu JM, O’Meara BC (2016) Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst Biol 65:583–601. https://doi.org/10.1093/sysbio/syw022

    Article  PubMed  Google Scholar 

  29. Fitzjohn RG (2012) Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol Evol 3:1084–1092. https://doi.org/10.1111/j.2041-210X.2012.00234.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Gubry-Rangin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Herrera-Alsina, L., Mynard, P., Sudiana, I.M., Juliandi, B., Travis, J.M.J., Gubry-Rangin, C. (2022). Reconstruction of State-Dependent Diversification: Integrating Phenotypic Traits into Molecular Phylogenies. In: Luo, H. (eds) Environmental Microbial Evolution. Methods in Molecular Biology, vol 2569. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2691-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2691-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2690-0

  • Online ISBN: 978-1-0716-2691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics