Skip to main content

Chemical Characterization, Biological Activities, and Some Medicinal Uses of Different Sweet Basil (Ocimum basilicum L.) Genotypes

  • Protocol
  • First Online:
Natural Product Experiments in Drug Discovery

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Sweet basil (Ocimum basilicum L.), one of the most widely used culinary herb, have a long history of use and mostly cultured in Belgium, France, Bulgaria, Hungary, India, Italy, Poland, Spain, and the United States. The origin of basil is known as the countries of India, Iran, and Africa. Traditionally, the use of basil as a medicinal plant is for the treatment of headaches, anxiety, nerve pain, repellent for mosquitoes, and kidney malfunction. Essential oils extracted from herbs can be used as aroma additives in food, pharmaceuticals, and cosmetics. Basil has several chemotypes or cultivars that result from an ease of crossing and genetic polymorphism. Thus, the morphological and chemical variability of the basil composes large chances for growing different cultivars of this valuable herbal plant and differs in their essential oil compositions. Major essential oil components were methyl chavicol (estragole), linalool, methyl eugenol, and methyl cinnamate. Basil genotypes obtained from different regions of the world are significantly different in all morphological traits and chemical composition of the essential oil. The purpose of this study was to investigate the essential oil components, biological activities, and some medicinal applications from a genetically improved basil genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harley MM, Paton A, Harley RM, Cade PG (1992) Pollen morphological studies in tribe Ocimeae (Nepetoideae: Labiatae): I. Ocimum L. Grana Palynol 31:161–176. https://doi.org/10.1080/00173139209432027

    Article  Google Scholar 

  2. Nurzynska-Wierdak R (2011) Sweet basil (Ocimum basilicum L.) flowering affected by foliar nitrogen application. Acta Agrobot 64:57–63

    Article  Google Scholar 

  3. Anonymous (2012) Essential oil market. In: Basil production. Directorate Communication Services,Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa

    Google Scholar 

  4. Singh V, Amdekar S, Verma O (2010) Ocimum sanctum (tulsi): Bio-pharmacological activities. Webmed Cent Pharmacol 1(10):1–7

    Google Scholar 

  5. Politeo O, Jukic M, Milos M (2007) Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chem 101(1):379–385

    Article  CAS  Google Scholar 

  6. Zeggwagh NA, Sulpice T, Eddouks M (2007) Anti-hyperglycaemic and hypolipidemic effects of Ocimum basilicum aqueous extract in diabetic rats. Am J Pharmacol Toxicol 2:123–129

    Article  Google Scholar 

  7. Noor Z, Ahmed D, Rehman H, Qamar M, Froeyen M, Ahmad S, Mirza M (2019) In vitro antidiabetic, anti-obesity and antioxidant analysis of Ocimum basilicum aerial biomass and in silico molecular docking simulations with alpha-amylase and lipase enzymes. Biology (Basel) 8(4):92

    CAS  Google Scholar 

  8. Sajjadi SE (2006) Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. DARU 14:128–130

    CAS  Google Scholar 

  9. Tadros M, Ezzat S, Salama M, Farag M (2014) In vitro and in vivo anticholinesterase activity of the volatile oil of the aerial parts of Ocimum basilicum L. and O. africanum Lour. Growing in Egypt. World Academy of Science, Engineering and Technology. Int J Pharmacol Pharmaceutical Sci 8:3

    Google Scholar 

  10. Lahiri D, Farlow M, Greig N, Sambamurti K (2002) Current drug targets for alzheimer’s disease treatment. Drug Dev Res 56:267–281. https://doi.org/10.1002/ddr.10081

    Article  CAS  Google Scholar 

  11. WHO (2018) The World Health Report. In: Epilepsy. WHO, Geneva, Switzerland

    Google Scholar 

  12. Wilcox KS, Dixon-Salazar T, Sills GJ, Ben-Menchem E, Steve White H, Porter RJ, Rogawski MA (2013) Issues related to the development of new antiseizure treatments. Epilepsia 54:24–34. https://doi.org/10.1111/epi.12296

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schmidt D, Schachter SC (2014) Drug treatment of epilepsy in adults. Br Med J 348:254. https://doi.org/10.1136/bmj.g254

    Article  Google Scholar 

  14. Alikatte KL, Aakondi BR, Yerragunta VG, Veerareddy PR, Palle S (2012) Antiamnesic activity of Syzygium cumini against scopolamine induced spatial memory impairments in rats. Brain Dev 34:844–851. https://doi.org/10.1016/j.braindev.2012.02.008

    Article  PubMed  Google Scholar 

  15. Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337:1419–1428

    Article  CAS  PubMed  Google Scholar 

  16. Kaurinovic B, Popovic M, Vlaisavljevic S, Trivic S (2011) Article Antioxidant capacity of Ocimum basilicum L and Origanum vulgare L extracts. Molecules 16:7401–7414. https://doi.org/10.3390/molecules16097401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rasul A, Akhtar N (2011) Formulation and in vivo evaluation for anti-aging effects of an emulsion containing basil extract using non- invasive biophysical techniques. Daru 19(5):344–350

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cantuti-Castelvetri I, Shukitt-Hale B, Joseph J (1999) Neurobehavioral aspects of antioxidants in aging. Int J Dev Neurosci 18:367–381. https://doi.org/10.1016/S0736-5748(00)00008-3

    Article  Google Scholar 

  19. Sarahroodi S, Esmaeili S, Mikaili P, Hemmati Z, Saberi Y (2012) The effects of green Ocimum basilicum hydroalcoholic extract on retention and retrieval of memory in mice. Ancient Sci Life 31(4):185–189. https://doi.org/10.4103/0257-7941.107354

    Article  Google Scholar 

  20. Avetisyan A, Markosian A, Petrosyan M, Sahakyan N, Babayan A, Aloyan S, Trchounian A (2017) Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement Altern Med 17:60. https://doi.org/10.1186/s12906-017-1587-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joshi R (2014) Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc Sci Life 33(3):151–156. https://doi.org/10.4103/0257-7941.144618

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morales MR, Simon JE (1996) New basil selections with compacts inflorescence for the ornamental market. In: Janick J (ed) Progress in new crops. ASHS, Alexandria, pp 543–546

    Google Scholar 

  23. Akdağ, A., Öztürk, E.: Distillation methods of essential oils. SÜ Sci Facult J Sci. 45(1), 22–31 (2019)

    Google Scholar 

  24. Aburigal YAA, Mirghani MES, Elmogtaba EY, Sirible AAM, Hamza NB, Hussein IH (2017) Total phenolic content and antioxidant capacity of basil (Ocimum basilicum L.) leaves from different locations. Int Food Res J 24(Suppl):378–381

    Google Scholar 

  25. Bettelheim KA, Evangelidis H, Pearce JL, Goldwater PN, Luke RKJ (1993) The isolation of cytotoxic necrotizing factor (CNF)-producing Escherichia coli from the intestinal contents of babies who died of sudden infant death syndrome (SIDS) and other causes as well as from the faeces of healthy babies. Comp Immunol Microbiol Infect Dis 16:87–90

    Article  CAS  PubMed  Google Scholar 

  26. Patel RP, Singh R, Rajeswara Rao BR, Singh RR, Srivastava A, Lal RK (2016) Differential response of genotype × environment on phenology, essential oil yield and quality of natural aroma chemicals of five Ocimum species. Indust Crops Prod 87:210–217

    Article  CAS  Google Scholar 

  27. Egata DF, Geja W, Mengesha B (2017) Agronomic and bio-chemical variability of ethiopian sweet basil (Ocimum basilicum L.) accessions. Acad Res J Agri Sci Res 5(7):489–508

    Google Scholar 

  28. Gurbuz B, Ipek A, Basalma D, Sarihan EO, Sancak C, Ozcan S (2006) Effect of diurnal variability on essential oil composition of sweet basil (Ocimum basilicum L.). Asian J Chem 18:285–288

    CAS  Google Scholar 

  29. Hussain AI, Anwar F, Sherazi STH, Przybylski R (2008) Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 108(3):986–995

    Article  CAS  PubMed  Google Scholar 

  30. Yaldiz G, Gul F, Kulak M (2015) Herb yield and chemical composition of basil (Ocimum basilicum L) essential oil in relation to the different harvest period and cultivation conditions. Afr J Tradit Complement Altern Med 12(6):71–76

    Article  CAS  Google Scholar 

  31. Yaldiz G, Camlica M (2021) Agro-morphological and phenotypic variability of sweet basil genotypes for breeding purposes. Crop Sci 61(1):624–642

    Article  CAS  Google Scholar 

  32. Purkayastha J, Nath SC (2006) Composition of the camphor-rich essential oil of Ocimum basilicum L native to Northeast India. J Essent Oil Res 18:332–334

    Article  CAS  Google Scholar 

  33. Kakaraparthi PS, Satya Srinivas KVN, Kotesh Kumar J, Kumar NA, Kumar A (2015) Composition of herb and seed oil and antimicrobial activity of the essential oil of two varieties of Ocimum basilicum harvested at short time intervals. J Plant Dev 22:59–76

    Google Scholar 

  34. Fischedick J (2013) Terpenoids for medicine, dissertation, conclusions and future perspectives. Leiden Univ:169–176

    Google Scholar 

  35. Liu T, Zhao J, Ma L, Ding Y, Su D (2012) Hepatoprotective effects of total triterpenoids and total flavonoids from Vitis vinifera L against immunological liver injury in mice. J Evid Based Complement Altern Med:1–8

    Google Scholar 

  36. Vernin G, Metzger J (1984) Analysis of basil oils by GCeMS data bank. Perfum Flavor 9:71–86

    CAS  Google Scholar 

  37. Lawrence B (1992) Advances in labiates science. In: Harly RM, Reynolds T (eds) Royal botanic gardens. Kew, UK, pp 399–436

    Google Scholar 

  38. Grayer RJ, Kite GC, Goldstone FJ, Bryan SE, Paton A, Putievsky E (1996) Intraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry 43(5):1033–1039

    Article  CAS  PubMed  Google Scholar 

  39. Marotti M, Piccaglia R, Giovanelli E (1996) Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. J Agric Food Chem 44:3926–3929

    Article  CAS  Google Scholar 

  40. Simon JE, Morales MR, Phippen WB, Vieira R (1999) Basil: a source of aroma compounds and a popular culinary and ornamental herb. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, pp 499–505

    Google Scholar 

  41. Pascual-Villalobos MJ, Ballesta-Acosta MC (2003) Chemical variation in an Ocimum basilicum germplasm collection and activity of the essential oils on Callosobruchus maculates. Biochem Syst Ecol 31:673–679

    Article  CAS  Google Scholar 

  42. Koutsos TV, Chatzopoulo PS, Katsiotis ST (2009) Effects of individual selection on agronomical and morphological traits and essential oil of a “Greek basil” population. Euphytica 170:365–370

    Article  CAS  Google Scholar 

  43. Heath HB (1981) Source book of flavours. AVI Publishing Co. Inc, Westport, CT

    Google Scholar 

  44. Werker E, Putievsky E, Ravid U, Dudai N, Katizir I (1993) Glandular hairs and essential oil in developing leaves of Ocimum basilicum L. (Laminaceae). Ann Bot 71:43–50

    Article  CAS  Google Scholar 

  45. Bahl JR, Garg SN, Bansal RP, Naqui AA, Singh V, Kumar S (2000) Yield and quality of shoot essential oil from vegetative: flowering and fruiting stage crops of Ocimum basilicum cv. Kusumohak J Med Plant Sci 22:743–746

    CAS  Google Scholar 

  46. Padalia RC, Verma RS, Upadhyay RK, Chauhan A, Sing VR (2017) Productivity and essential oil quality assessment of promising accessions of Ocimum basilicum L from North India. Ind Crops Prod 97:79–86

    Article  CAS  Google Scholar 

  47. Abduelrahman AHN, Elhussein SA, Osman NA, Nour AH (2009) Morphological variability and chemical composition of essential oils from nineteen varieties of Basil (Ocimum basilicum L.) growing in Sudan. Int J Chem Technol 1(1):1–10

    Article  CAS  Google Scholar 

  48. Yaldiz G, Camlica M, Ozen F (2019) Biological value and chemical components of essential oils of sweet basil (Ocimum basilicum L.) grown with organic fertilization sources. J Sci Food Agric 99:2005–2013

    CAS  PubMed  Google Scholar 

  49. Chen SY, Dai TX, Chang YT, Wang SS, Ou SL, Chuang WL, Chuang CY, Lin YH, Lin YH, Ku HM (2013) Genetic diversity among Ocimum species based on ISSR, RAPD and SRAP markers. Aust J Crop Sci 7(10):1463–1471

    Google Scholar 

  50. Zhang JW, Li SK, Wu WJ (2009) The main chemical composition and in vitro antifungal activity of the essential oils of Ocimum basilicum Linn. var. pilosum (Willd.) Benth. Molecules 14:273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwee EM, Niemeyer ED (2011) Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chem 128:1044–1050

    Article  CAS  Google Scholar 

  52. Beatovic D, Krstic-Miloševic D, Trifunovic S, Šiljegovic J, Glamoclija J, Ristic M, Jelačić S (2015) Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec Nat Prod 9:62–75

    Google Scholar 

  53. Aburigal YA, Hamza NB, Hussein IH, Elmogtaba EY, Osman TH, Ali FI, Siribel AA (2016) Variability in content and chemical constituents of essential oil of sweet basil (Ocimum basilicum L.) obtained from aerial plant parts. Adv Biosci Biotechnol 7(3):183

    Article  Google Scholar 

  54. Pripdeevech P, Chumpolsri W, Suttiarporn P, Wongpornchai S (2010) The chemicalcomposition and antioxidant activities of basil from Thailand using retentionindices and comprehensive two-dimensional gas chromatography. J Serbian Chem Soc 75:1503–1513

    Article  CAS  Google Scholar 

  55. Nguyen PM, Niemeyer ED (2008) Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). J Agric Food Chem 24(56):8685–8691

    Article  CAS  Google Scholar 

  56. Taie HAA, Salama ZAR, Radwan S (2010) Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not Bot Horti Agrobot 38:119–127

    Google Scholar 

  57. Thoo YY, Ho SK, Liang JY, Ho CW, Tan CP (2010) Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chem 120(1):290–295. https://doi.org/10.1016/j.foodchem.2009.09.064

    Article  CAS  Google Scholar 

  58. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  59. Sousa C, Pereira DM, Pereira JA, Bento A, Rodrigues MA, Dopico García S, Valentão P, Lopes G, Ferreres F, Seabra MR, Andrade PB (2008) Multivariate analysis of tronchuda cabbage (Brassica oleracea L. var. costata DC) phenolics: influence of fertilizers. J Agric Food Chem 56:2231–2239

    Article  CAS  PubMed  Google Scholar 

  60. Uyoh EA, Chukwurah PN, David IA, Bassey AC (2013) Evaluation of antioxidant capacity of two ocimum species consumed locally as spices in Nigeria as a justification for increased domestication. Am J Plant Sci 4:221–229

    Google Scholar 

  61. Katalinic V, Milos M, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94:550–557

    Article  CAS  Google Scholar 

  62. Ahmad I, Ahmad N, Wang F (2009) Antioxidant phenylpropanoid glycosides from Buddleja davidii. J Enzyme Inhib Med Chem 24(4):993–997

    Article  CAS  PubMed  Google Scholar 

  63. Teofilović B, Grujić-Letić N, Goločorbin-Kon S, Stojanović S, Vastag G, Gadžurić S (2017) Experimental and chemometric study of antioxidant capacity of basil (Ocimum basilicum) extracts. Ind Crops and Prod 100:176–182

    Article  CAS  Google Scholar 

  64. Spigno G, Tramelli L, De Faveri DM (2007) Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng 81:200–208

    Article  CAS  Google Scholar 

  65. Li QX, Chang CL (2016) Basil (Ocimum basilicum L.) oils. In: Essential oils in food preservation, flavor and safety. Elsevier, pp 231–238

    Chapter  Google Scholar 

  66. Meena M, Vijay S (1994) Antimicrobial activity of essential oils from spices. J Food Sd Technol (Calcutta) 31(68–70)

    Google Scholar 

  67. Katayama T, Nagai I (1960) Chemical significance of the volatile components of spices in the food preservative view point. VI Structure and antibacterial activity of terpenes. Bull Jap Soc Sci Fish 26:29–32

    Article  CAS  Google Scholar 

  68. Soković M, Ćirić A, Glamočlija J, Nikolić M, van Griensven LJLD (2014) Agaricus blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa. Molecules 19:4189–4199. https://doi.org/10.3390/molecules19044189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saxena RC, Singh R, Kumar P, Mahendra P, Negi S, Saxena VS, Geetharani P, Joshua JA, Venkateshwarl K (2012) Efficacy of an extract of Ocimum tenuiflorum (OciBest) in the management of general stress: A double-blind, placebo-controlled study. Evid Based Complement Alternat Med 2012:1–7

    Article  Google Scholar 

  70. Shirazi MT, Gholami H, Kavoosi G, Rowshan V, Tafsiry A (2014) Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Sci Nutr 2:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kocić-Tanackov SD, Dimić GR, Pejin DJ, Mojović LV, Pejin JD, Tanackov IJ (2012) Antifungal activity of the basil (Ocimum basilicum L.) extract on Penicillium aurantiogriseum, P. glabrum, P. chrysogenum, and P. brevicompactum. Acta Period Technol 43:247–256

    Article  Google Scholar 

  72. Ouibrahim A, Tlili-Ait-kaki Y, Bennadja S, Amrouni S, Djahoudi AG, Djebar MR (2013) Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L and Ocimum basilicum L from Northeast of Algeria. Global J Med Microbiol Rev 1(65–70)

    Google Scholar 

  73. Abdollahi A, Hassani A, Ghosta Y, Bernousi I, Meshkatalsadat MH, Shabani R, Ziaee SM (2012) Evaluation of essential oils for maintaining postharvest quality of Thompson seedless table grape. Nat Prod Res 26:77–83

    Article  CAS  PubMed  Google Scholar 

  74. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Antimicrobial properties of basil and its possible application in food packing. J Agric Food Chem 51:3197–3207

    Article  CAS  PubMed  Google Scholar 

  75. Wan J, Wilcock A, Coventry MJ (1998) The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. J Appl Microbiol 84(2):152–158. https://doi.org/10.1046/j.1365-2672.1998.00338.x

    Article  CAS  PubMed  Google Scholar 

  76. Mejlholm O, Dalgaard P (2002) Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products. Lett Appl Microbiol 34:27–31

    Article  CAS  PubMed  Google Scholar 

  77. Cardoso NNRN, Alviano CS, Blank AF, Romanos MTV, Fonseca BB, Rozental S, Rodrigues IA, Alviano DS (2016) Synergism effect of the essential oil from Ocimum basilicum var. Maria Bonita and its major components with fluconazole and its influence on Ergosterol Biosynthesis. Evid Based Complement Alternat Med 2016(7–8):1–12

    Article  CAS  Google Scholar 

  78. Cisarova M, Tancınova D, Medo J (2016) Antifungalactivity of lemon, eucalyptus, thyme, oregano, sage and lavenderessential oils against Aspergillus niger and Aspergillus tubingensis isolated from grapes. Potravinarstvo 10:83–88

    Article  Google Scholar 

  79. De Almeida R, De Fatima Agra M, Maior MS, De Sousa D (2011) Essential oils and their constituents: anticonvulsant activity. Molecules 16:2726–2742. https://doi.org/10.3390/molecules16032726

    Article  CAS  PubMed  Google Scholar 

  80. Agarwal C, Sharma N, Gaurav S (2013) Anti-epileptic activity of Ocimum species: A brief review. Int J App Sci Biotech 1:180–183. https://doi.org/10.3126/ijasbt.v1i4.9168

    Article  Google Scholar 

  81. Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE, Kunz WS (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15(7):1105–1114. https://doi.org/10.1046/j.1460-9568.2002.01947.x

    Article  PubMed  Google Scholar 

  82. Koutroumanidou E, Kimbaris A, Kortsaris A, Bezirtzoglou E, Polissiou M, Charalabopoulos K, Pagonopoulou O (2013) Increased seizure latency and decreased severity of pentylenetetrazol-induced seizures in mice after essential oil administration. Physiol Pharmacol 21:295–303. https://doi.org/10.1155/2013/532657

    Article  Google Scholar 

  83. Huang CW, Chow JC, Tsai JJ, Wu SN (2012) Characterizing the effects of Eugenol on neuronal ionic currents and hyperexcitability. Psychopharmacol 221:575–587. https://doi.org/10.22038/IJBMS.2017.9004

    Article  CAS  Google Scholar 

  84. Gupta YK, Briyal S (2006) Protective effect of vineatrol against kainic acid induced seizures, oxidative stress and on the expression of heat shock proteins in rats. Eur Neuropsychopharmacol 16:85–91. https://doi.org/10.1016/j.euroneuro.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  85. Jadoon S, Karim S, Asad M, Akram M, Khan A, Malik A, Chen C, Murtaza G (2015) Anti-Aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxidative Med Cell Longev 2015:1–17. https://doi.org/10.1155/2015/709628

    Article  CAS  Google Scholar 

  86. Paramanya A, Ali A (2019) Role of oxidative stress in biological systems. Middle-East J Sci 5(2):155–162. https://doi.org/10.23884/mejs.2019.5.2.07

    Article  Google Scholar 

  87. Gülçin I, Elmastat M, Hassan Y, Enein A et al (2007) Phytother 21(4):354–361. https://doi.org/10.1002/ptr.2069

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yaldiz, G., Camlica, M., Pradhan, Y., Ali, A. (2023). Chemical Characterization, Biological Activities, and Some Medicinal Uses of Different Sweet Basil (Ocimum basilicum L.) Genotypes. In: Arunachalam, K., Yang, X., Puthanpura Sasidharan, S. (eds) Natural Product Experiments in Drug Discovery. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2683-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2683-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2682-5

  • Online ISBN: 978-1-0716-2683-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics