Skip to main content

Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Phase-Separated Biomolecular Condensates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2563))

Abstract

Liquid-liquid phase separation of protein and RNA complexes into biomolecular condensates has emerged as a ubiquitous phenomenon in living systems. These protein-RNA condensates are thought to be involved in many biological functions in all forms of life. One of the most sought-after properties of these condensates is their dynamical properties, as they are a major determinant of condensate physiological function and disease processes. Measurement of the diffusion dynamics of individual components in a multicomponent biomolecular condensate is therefore routinely performed. Here, we outline the experimental procedure for performing in-droplet fluorescence correlation spectroscopy (FCS) measurements to extract the diffusion coefficient of individual molecules within a biomolecular condensate in vitro. Unlike more common experiments such as fluorescence recovery after photobleaching (FRAP), where data interpretation is not straightforward and strictly model dependent, FCS offers a robust and more accurate way to quantify biomolecular diffusion rates in the dense phase. The small observation volume allows FCS experiments to report on the local diffusion coefficient within a spatial resolution of <1 μm, making it ideal for probing spatial inhomogeneities within condensates as well as variable dynamics within subcompartments of multiphasic condensates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18(5):285–298

    Article  CAS  Google Scholar 

  2. Laflamme G, Mekhail K (2020) Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Commun Biol 3(1):1–8

    Article  Google Scholar 

  3. Woodruff JB, Hyman AA, Boke E (2018) Organization and function of non-dynamic biomolecular condensates. Trends Biochem Sci 43(2):81–94

    Article  CAS  Google Scholar 

  4. Lyon AS, Peeples WB, Rosen MK (2020) A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol:1–21

    Google Scholar 

  5. Ditlev JA, Case LB, Rosen MK (2018) Who’s in and who’s out—compositional control of biomolecular condensates. J Mol Biol 430(23):4666–4684

    Article  CAS  Google Scholar 

  6. St George-Hyslop P, Lin JQ, Miyashita A, Phillips EC, Qamar S, Randle SJ et al (1693) The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Brain Res 2018:11–23

    Google Scholar 

  7. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162(5):1066–1077

    Article  CAS  Google Scholar 

  8. Jawerth L, Fischer-Friedrich E, Saha S, Wang J, Franzmann T, Zhang X et al (2020) Protein condensates as aging Maxwell fluids. Science 370(6522):1317–1323

    Article  CAS  Google Scholar 

  9. Taylor NO, Wei M-T, Stone HA, Brangwynne CP (2019) Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys J 117(7):1285–1300

    Article  CAS  Google Scholar 

  10. Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC-H, Eckmann CR, Myong S et al (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci 112(23):7189–7194

    Article  CAS  Google Scholar 

  11. Thompson NL (2002) Fluorescence correlation spectroscopy. Topics in fluorescence spectroscopy. Springer, pp 337–378

    Book  Google Scholar 

  12. Meyvis TK, De Smedt SC, Van Oostveldt P, Demeester J (1999) Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm Res 16(8):1153–1162

    Article  CAS  Google Scholar 

  13. Soranno A (2019) The trap in the FRAP: a cautionary tale about transport measurements in biomolecular condensates. Biophys J 117(11):2041

    Article  CAS  Google Scholar 

  14. Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ, Bremer A et al (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367(6478):694–699

    Article  CAS  Google Scholar 

  15. Alshareedah I, Thurston GM, Banerjee PR (2021) Quantifying viscosity and surface tension of multi-component protein-nucleic acid condensates. Biophys J. https://doi.org/10.1016/j.bpj.2021.01.005

  16. Alshareedah I, Moosa MM, Raju M, Potoyan DA, Banerjee PR (2020) Phase transition of RNA−protein complexes into ordered hollow condensates. Proc Natl Acad Sci 117(27):15650–15658. https://doi.org/10.1073/pnas.1922365117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei M-T, Elbaum-Garfinkle S, Holehouse AS, Chen CC-H, Feric M, Arnold CB et al (2017) Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem 9(11):1118–1125

    Article  CAS  Google Scholar 

  18. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165(7):1686–1697

    Article  CAS  Google Scholar 

  19. Sanders DW, Kedersha N, Lee DS, Strom AR, Drake V, Riback JA et al (2020) Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181(2):306–24. e28

    Article  CAS  Google Scholar 

  20. Kaur T, Raju M, Alshareedah I, Davis RB, Potoyan DA, Banerjee PR (2021) Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat Commun 12(1):1–16

    Article  Google Scholar 

  21. Mountain GA, Keating CD (2019) Formation of multiphase complex coacervates and partitioning of biomolecules within them. Biomacromolecules 21(2):630–640

    Article  Google Scholar 

  22. Lu T, Spruijt E (2020) Multiphase complex coacervate droplets. J Am Chem Soc 142(6):2905–2914

    Article  CAS  Google Scholar 

  23. Müller C, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W et al (2008) Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. EPL (Europhysics Letters) 83(4):46001

    Article  Google Scholar 

  24. Schwille P, Haustein E (2002) Fluorescence correlation spectroscopy. A tutorial for the Biophysics Textbook Online (BTOL) Biophysical Society, Rockville

    Google Scholar 

  25. Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB et al (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43(4):1044–1056

    Article  CAS  Google Scholar 

  26. Buschmann V, Krämer B, Koberling F, Macdonald R, Rüttinger S (2009) Quantitative FCS: determination of the confocal volume by FCS and bead scanning with the microtime 200. Application Note PicoQuant GmbH, Berlin

    Google Scholar 

  27. Perevoshchikova I, Kotova E, Antonenko YN (2011) Fluorescence correlation spectroscopy in biology, chemistry, and medicine. Biochem Mosc 76(5):497–516

    Article  CAS  Google Scholar 

  28. Bacia K, Haustein E, Schwille P (2014) Fluorescence correlation spectroscopy: principles and applications. Cold Spring Harbor Prot 2014(7):pdb. top081802

    Article  Google Scholar 

  29. Kaur T, Alshareedah I, Wang W, Ngo J, Moosa MM, Banerjee PR (2019) Molecular crowding tunes material states of ribonucleoprotein condensates. Biomol Ther 9(2):71

    CAS  Google Scholar 

  30. Alshareedah I, Kaur T, Ngo J, Seppala H, Kounatse L-AD, Wang W et al (2019) Interplay between short-range attraction and long-range repulsion controls reentrant liquid condensation of ribonucleoprotein–RNA complexes. J Am Chem Soc 141(37):14593–14602. https://doi.org/10.1021/jacs.9b03689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis RB, Kaur T, Moosa MM, Banerjee PR (2021) FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. Protein Sci

    Google Scholar 

  32. Toseland CP (2013) Fluorescent labeling and modification of proteins. J Chem Biol 6(3):85–95

    Article  Google Scholar 

  33. Solomatin S, Herschlag D (2009) Methods of site-specific labeling of RNA with fluorescent dyes. Methods Enzymol 469:47–68

    Article  CAS  Google Scholar 

  34. Proudnikov D, Mirzabekov A (1996) Chemical methods of DNA and RNA fluorescent labeling. Nucleic Acids Res 24(22):4535–4542

    Article  CAS  Google Scholar 

  35. Sherman E, Itkin A, Kuttner YY, Rhoades E, Amir D, Haas E et al (2008) Using fluorescence correlation spectroscopy to study conformational changes in denatured proteins. Biophys J 94(12):4819–4827

    Article  CAS  Google Scholar 

  36. Kapusta P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. Application note 2

    Google Scholar 

  37. Petrášek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Institute of General Medical Sciences (R35 GM138186) and the National Institute on Aging (R21 AG064258) to P.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya R. Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alshareedah, I., Banerjee, P.R. (2023). Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy. In: Zhou, HX., Spille, JH., Banerjee, P.R. (eds) Phase-Separated Biomolecular Condensates. Methods in Molecular Biology, vol 2563. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2663-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2663-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2662-7

  • Online ISBN: 978-1-0716-2663-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics