Skip to main content

Health Monitoring for Laboratory Salamanders

  • Protocol
  • First Online:
Salamanders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2562))

Abstract

Laboratory animal health monitoring programs are necessary to protect animal health and welfare, the validity of experimental data, and human health against zoonotic infections. Health monitoring programs should be designed based on a risk assessment and knowledge about the biology and transmission of salamander pathogens. Both traditional and molecular diagnostic platforms are available for salamanders, and they provide complementary information. A comprehensive approach to health monitoring leverages the advantages of multiple platforms to provide a more complete picture of colony health and pathogen status. This chapter presents key considerations in the design and implementation of a colony health monitoring program for laboratory salamanders, including protocols for necropsy and sample collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker DG (1998) Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 11(2):231–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cotter JD, Storfer A, Page RB, Beachy CK, Voss SR (2008) Transcriptional response of Mexican axolotls to Ambystoma tigrinum virus (ATV) infection. BMC Genomics 9:493. https://doi.org/10.1186/1471-2164-9-493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koniski A, Cohen N (1994) Mitogen-activated axolotl (Ambystoma mexicanum) splenocytes produce a cytokine that promotes growth of homologous lymphoblasts. Dev Comp Immunol 18(3):239–250. https://doi.org/10.1016/0145-305x(94)90016-7

    Article  CAS  PubMed  Google Scholar 

  4. McDonald CA, Longo AV, Lips KR, Zamudio KR (2020) Incapacitating effects of fungal coinfection in a novel pathogen system. Mol Ecol 29(17):3173–3186. https://doi.org/10.1111/mec.15452

    Article  PubMed  Google Scholar 

  5. Longo AV, Fleischer RC, Lips KR (2019) Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts. Biol Invasions 21(6):2233–2245

    Article  Google Scholar 

  6. Council NR (2010) Guide for the care and use of laboratory animals. National Academies Press, Washington, DC

    Google Scholar 

  7. Mähler M, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B, Pritchett-Corning K, Raspa M (2014) FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim 48(3):178–192

    Article  Google Scholar 

  8. Nicklas W (2008) International harmonization of health monitoring. ILAR J 49(3):338–346

    Article  CAS  PubMed  Google Scholar 

  9. Ujszegi J, Molnár K, Hettyey A (2020) How to disinfect anuran eggs? Sensitivity of anuran embryos to chemicals widely used for the disinfection of larval and post-metamorphic amphibians. J Appl Toxicol 41:387–398

    Article  PubMed  Google Scholar 

  10. Reavill DR (2001) Amphibian skin diseases. Vet Clin North Am Exot Anim Pract 4(2):413–440

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell MA (2007) Parasites of amphibians. In: Flynn’s parasites of laboratory animals, 2nd edn. Black-well Publishers Ltd., pp 117–175

    Chapter  Google Scholar 

  12. Mutschmann F (2015) Parasite infestation in the axolotl (Ambystoma mexicanum)-recognition and therapy. Kleintierpraxis 60(9):461–472

    Google Scholar 

  13. Hallinger MJ, Taubert A, Hermosilla C (2020) Endoparasites infecting exotic captive amphibian pet and zoo animals (Anura, Caudata) in Germany. Parasitol Res 119(11):3659–3673. https://doi.org/10.1007/s00436-020-06876-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klinger RE, Floyd RF (1998) Introduction to freshwater fish parasites. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS

    Google Scholar 

  15. Kent ML, Fournie JW (2007) Parasites of fishes. In: Flynn’s parasites of laboratory animals, 2nd edn. Black-well Publishers Ltd., pp 69–116

    Chapter  Google Scholar 

  16. Pouder DB, Curtis EW, Yanong RP (2005) Common freshwater fish parasites pictorial guide: sessile ciliates. EDIS 2005 (9)

    Google Scholar 

  17. Pouder DB, Curtis EW, Yanong RP (2005) Common freshwater fish parasites pictorial guide: motile ciliates. EDIS 2005 (9)

    Google Scholar 

  18. Pouder DB, Curtis EW, Yanong RP (2005) Common freshwater fish parasites pictorial guide: nematodes. EDIS 2005 (9)

    Google Scholar 

  19. Pouder DB, Curtis EW, Yanong RP (2005) Common freshwater fish parasites pictorial guide: acanthocephalans, cestodes, leeches, & pentastomes. EDIS 2005 (9)

    Google Scholar 

  20. Pouder DB, Curtis EW, Yanong RP (2005) Common freshwater fish parasites pictorial guide: flagellates

    Google Scholar 

  21. Pouder DB, Curtis EW, Yanong RP (2005) Common freshwater fish parasites pictorial guide: digenean trematodes. EDIS 2005 (9)

    Google Scholar 

  22. Roberts HE, Palmeiro B, Weber ES III (2009) Bacterial and parasitic diseases of pet fish. Vet Clin North Am Exot Anim Pract 12(3):609–638

    Article  PubMed  Google Scholar 

  23. Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI (2018) Review of the amphibian immune response to chytridiomycosis, and future directions. Front Immunol 9:2536

    Article  PubMed  PubMed Central  Google Scholar 

  24. Poynton S, Whitaker B (2001) Protozoa and metazoa infecting amphibians. In: Amphibian medicine and captive husbandry. Krieger Publishing Company, Malabar, pp 193–221

    Google Scholar 

  25. Tinsley R (1995) Parasitic disease in amphibians: control by the regulation of worm burdens. Parasitology 111(S1):S153–S178

    Article  PubMed  Google Scholar 

  26. Shek WR, Smith AL, Pritchett-Corning KR (2015) Microbiological quality control for laboratory rodents and lagomorphs. In: Laboratory animal medicine. Elsevier, Amsterdam, pp 463–510

    Chapter  Google Scholar 

  27. Philips BH, Crim MJ, Hankenson FC, Steffen EK, Klein PS, Brice AK, Carty AJ (2015) Evaluation of presurgical skin preparation agents in African clawed frogs (Xenopus laevis). J Am Assoc Lab Anim Sci 54(6):788–798

    PubMed  PubMed Central  Google Scholar 

  28. Buller NB (2004) Bacteria from fish and other aquatic animals: a practical identification manual. Cabi Publishing, Wallingford

    Book  Google Scholar 

  29. Biswas S, Rolain JM (2013) Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J Microbiol Methods 92(1):14–24. https://doi.org/10.1016/j.mimet.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  30. Assis GBN, Pereira FL, Zegarra AU, Tavares GC, Leal CA, Figueiredo HCP (2017) Use of MALDI-TOF mass spectrometry for the fast identification of gram-positive fish pathogens. Front Microbiol 8:1492. https://doi.org/10.3389/fmicb.2017.01492

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bohme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Calo-Mata P, Canas B (2010) Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. J Proteome Res 9(6):3169–3183. https://doi.org/10.1021/pr100047q

    Article  CAS  PubMed  Google Scholar 

  32. Bohme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Canas B, Calo-Mata P (2011) Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 32(21):2951–2965. https://doi.org/10.1002/elps.201100217

    Article  CAS  PubMed  Google Scholar 

  33. Bohme K, Fernandez-No IC, Pazos M, Gallardo JM, Barros-Velazquez J, Canas B, Calo-Mata P (2013) Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting. Electrophoresis 34(6):877–887. https://doi.org/10.1002/elps.201200532

    Article  CAS  PubMed  Google Scholar 

  34. Kralik P, Ricchi M (2017) A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 8:108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Compton SR (2020) PCR and RT-PCR in the diagnosis of laboratory animal infections and in health monitoring. J Am Assoc Lab Anim Sci 59(5):458–468

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li H, Bai R, Zhao Z, Tao L, Ma M, Ji Z, Jian M, Ding Z, Dai X, Bao F (2018) Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep 38(6):1–8

    Article  Google Scholar 

  37. Wong YP, Othman S, Lau YL, Radu S, Chee HY (2018) Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol 124(3):626–643

    Article  CAS  PubMed  Google Scholar 

  38. Chertow DS (2018) Next-generation diagnostics with CRISPR. Science 360(6387):381–382

    Article  PubMed  Google Scholar 

  39. Chiu C (2018) Cutting-edge infectious disease diagnostics with CRISPR. Cell Host Microbe 23(6):702–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crim MJ, Lawrence C, Livingston RS, Rakitin A, Hurley SJ, Riley LK (2017) Comparison of antemortem and environmental samples for zebrafish health monitoring and quarantine. J Am Assoc Lab Anim Sci 56(4):412–424

    PubMed  PubMed Central  Google Scholar 

  41. Bauer BA, Besch-Williford C, Livingston RS, Crim MJ, Riley LK, Myles MH (2016) Influence of rack design and disease prevalence on detection of rodent pathogens in exhaust debris samples from individually ventilated caging systems. J Am Assoc Lab Anim Sci 55(6):782–788

    PubMed  PubMed Central  Google Scholar 

  42. Feldman SH, Ramirez MP (2014) Molecular phylogeny of Pseudocapillaroides xenopi (Moravec et Cosgrov 1982) and development of a quantitative PCR assay for its detection in aquarium sediment. J Am Assoc Lab Anim Sci 53(6):668–674

    PubMed  PubMed Central  Google Scholar 

  43. Burke RL, Whitehouse CA, Taylor JK, Selby EB (2009) Epidemiology of invasive Klebsiella pneumoniae with hypermucoviscosity phenotype in a research colony of nonhuman primates. Comp Med 59(6):589–597

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller M, Sabrautzki S, Beyerlein A, Brielmeier M (2019) Combining fish and environmental PCR for diagnostics of diseased laboratory zebrafish in recirculating systems. PLoS One 14(9):e0222360. https://doi.org/10.1371/journal.pone.0222360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller M, Brielmeier M (2018) Environmental samples make soiled bedding sentinels dispensable for hygienic monitoring of IVC-reared mouse colonies. Lab Anim 52(3):233–239. https://doi.org/10.1177/0023677217739329

    Article  CAS  PubMed  Google Scholar 

  46. Heil N (2009) National wild fish health survey—laboratory procedures manual. US Fish and Wildlife Service, Warm Springs

    Google Scholar 

  47. Phosphate-buffered saline (PBS) (2006) Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.rec8247

  48. Underwood W, Anthony R (2020) AVMA guidelines for the euthanasia of animals: 2020 edition. American Veterinary Medical Association

    Google Scholar 

  49. Sheehan DC, Hrapchak BB (1980) Theory and practice of histotechnology. Battelle, Columbus, pp 190–192

    Google Scholar 

  50. Heyderman E (1992) Histotechnology. A self-instructional text. Histopathology 20(1):91–91

    Article  Google Scholar 

  51. Worthylake KM, Hovingh P (1989) Mass mortality of salamanders (Ambystoma tigrinum) by bacteria (Acinetobacter) in an oligotrophic seepage mountain lake. Great Basin Nat 49:364–372

    Article  Google Scholar 

  52. Boyer CI Jr, Blackler K, Delanney LE (1971) Aeromonas hydrophila infection in the Mexican axoloti, Siredon mexicanum. Lab Anim Sci 21(3):372–375

    PubMed  Google Scholar 

  53. Carey C, Bryant CJ (1995) Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations. Environ Health Perspect 103(suppl 4):13–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taylor S, Green D, Wright K, Whitaker B (2001) Bacterial diseases. In: Amphibian medicine and captive husbandry. Krieger Publishing Company, Malabar

    Google Scholar 

  55. Raffel TR, Bommarito T, Barry DS, Witiak SM, Shackelton LA (2008) Widespread infection of the Eastern red-spotted newt (Notophthalmus viridescens) by a new species of Amphibiocystidium, a genus of fungus-like mesomycetozoan parasites not previously reported in North America. Parasitology 135(2):203–215. https://doi.org/10.1017/S0031182007003708

    Article  CAS  PubMed  Google Scholar 

  56. Del Valle JM, Eisthen HL (2019) Treatment of chytridiomycosis in laboratory axolotls (Ambystoma mexicanum) and rough-skinned newts (Taricha granulosa). Comp Med 69(3):204–211. https://doi.org/10.30802/AALAS-CM-18-000090

    Article  PubMed  PubMed Central  Google Scholar 

  57. Michaels CJ, Rendle M, Gibault C, Lopez J, Garcia G, Perkins MW, Cameron S, Tapley B (2018) Batrachochytrium dendrobatidis infection and treatment in the salamanders Ambystoma andersoni, A. dumerilii and A. mexicanum. Herpetol J 28(2):87–92

    Google Scholar 

  58. Duffus AL, Cunningham AA (2010) Major disease threats to European amphibians. Herpetol J 20(3):117–127

    Google Scholar 

  59. Frias-Alvarez P, Vredenburg VT, Familiar-Lopez M, Longcore JE, Gonzalez-Bernal E, Santos-Barrera G, Zambrano L, Parra-Olea G (2008) Chytridiomycosis survey in wild and captive mexican amphibians. EcoHealth 5(1):18–26. https://doi.org/10.1007/s10393-008-0155-3

    Article  PubMed  Google Scholar 

  60. Davidson EW, Parris M, Collins JP, Longcore JE, Pessier AP, Brunner J (2003) Pathogenicity and transmission of chytridiomycosis in tiger salamanders (Ambystoma tigrinum). Copeia 3:601–607

    Article  Google Scholar 

  61. Hidalgo-Vila J, Díaz-Paniagua C, Marchand MA, Cunningham AA (2012) Batrachochytrium dendrobatidis infection of amphibians in the Doñana National Park, Spain. Dis Aquat Org 98(2):113–119

    Article  Google Scholar 

  62. Kumar R, Malagon DA, Carter ED, Miller DL, Bohanon ML, Cusaac JPW, Peterson AC, Gray MJ (2020) Experimental methodologies can affect pathogenicity of Batrachochytrium salamandrivorans infections. PLoS One 15(9):e0235370. https://doi.org/10.1371/journal.pone.0235370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp.nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A 110(38):15325–15329. https://doi.org/10.1073/pnas.1307356110

    Article  PubMed  PubMed Central  Google Scholar 

  64. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U, Goka K, Lips KR, Muletz C, Zamudio KR, Bosch J, Lotters S, Wombwell E, Garner TW, Cunningham AA, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT, Kolby JE, Van Bocxlaer I, Bossuyt F, Pasmans F (2014) Wildlife disease. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346(6209):630–631. https://doi.org/10.1126/science.1258268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sabino-Pinto J, Veith M, Vences M, Steinfartz S (2018) Asymptomatic infection of the fungal pathogen Batrachochytrium salamandrivorans in captivity. Sci Rep 8(1):11767. https://doi.org/10.1038/s41598-018-30240-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baker BB, Meyer DN, Llaniguez JT, Rafique SE, Cotroneo TM, Hish GA, Baker TR (2019) Management of multiple protozoan ectoparasites in a research colony of axolotls (Ambystoma mexicanum). J Am Assoc Lab Anim Sci 58(4):479–484. https://doi.org/10.30802/AALAS-JAALAS-18-000111

    Article  PubMed  PubMed Central  Google Scholar 

  67. Borland S (2000) Practical axolotl. Axolotl Newsl 28:17–22

    Google Scholar 

  68. Farkas JE, Monaghan JR (2015) Housing and maintenance of Ambystoma mexicanum, the Mexican axolotl. Methods Mol Biol 1290:27–46. https://doi.org/10.1007/978-1-4939-2495-0_3

    Article  PubMed  Google Scholar 

  69. Schaefer DA, Eisthen HL (1990) Treatment of columnaris disease in aquatic salamanders. Axolotl Newsl 19:31–32

    Google Scholar 

  70. Björklund N, Duhon S (1999) The Mexican axolotl as a pet and a laboratory animal. Biology, husbandry and health care of reptiles and amphibians. Tropical Fish Hobbyist, Jersey City

    Google Scholar 

  71. Rankin JS (1937) An ecological study of parasites of some North Carolina salamanders. Ecol Monogr 7(2):169–269

    Article  Google Scholar 

  72. Duhon ST (1989) Diseases of axolotls. In: Developmental biology of the axolotl. Oxford University Press, New York, pp 264–269

    Google Scholar 

  73. Herman RL (1984) Ichthyophonus-like infection in newts (Notophthalmus viridescens Rafinesque). J Wildl Dis 20(1):55–56. https://doi.org/10.7589/0090-3558-20.1.55

    Article  CAS  PubMed  Google Scholar 

  74. Mikaelian I, Ouellet M, Pauli B, Rodrigue J, Harshbarger JC, Green DM (2000) Ichthyophonus-like infection in wild amphibians from Quebec, Canada. Dis Aquat Org 40(3):195–201. https://doi.org/10.3354/dao040195

    Article  CAS  Google Scholar 

  75. Raffel TR, Dillard JR, Hudson PJ (2006) Field evidence for leech-borne transmission of amphibian Ichthyophonus sp. J Parasitol 92(6):1256–1264. https://doi.org/10.1645/GE-808R1.1

    Article  PubMed  Google Scholar 

  76. Ware JL, Viverette C, Kleopfer JD, Pletcher L, Massey D, Wright A (2008) Infection of spotted salamanders (Ambystoma maculatum) with Ichthyophonus-like organisms in Virginia. J Wildl Dis 44(1):174–176. https://doi.org/10.7589/0090-3558-44.1.174

    Article  PubMed  Google Scholar 

  77. Black H, Rush-Munro FM, Woods G (1971) Mycobacterium marinum infections acquired from tropical fish tanks. Australas J Dermatol 12(3):155–164. https://doi.org/10.1111/j.1440-0960.1971.tb00004.x

    Article  CAS  PubMed  Google Scholar 

  78. Chemlal K, De Ridder K, Fonteyne P-A, Meyers WM, Swings J, Portaels F (2001) The use of IS2404 restriction fragment length polymorphisms suggests the diversity of Mycobacterium ulcerans from different geographical areas. Am J Trop Med Hyg 64(5):270–273

    Article  CAS  PubMed  Google Scholar 

  79. Clark HF, Shepard CC (1963) Effect of environmental temperatures on infection with Mycobacterium marinum (Balnei) of mice and a number of poikilothermic species. J Bacteriol 86:1057–1069. https://doi.org/10.1128/JB.86.5.1057-1069.1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reavill DR, Schmidt RE (2012) Mycobacterial lesions in fish, amphibians, reptiles, rodents, lagomorphs, and ferrets with reference to animal models. Vet Clin North Am Exot Anim Pract 15(1):25–40, v. https://doi.org/10.1016/j.cvex.2011.10.001

  81. Wright KM, Whitaker BR (2001) Amphibian medicine and captive husbandry. Krieger Publishing Company, Malabar

    Google Scholar 

  82. DeLanney LE, Collins NH, Cohen N, Reid R (1975) Transplantation immunogenetics and MLC reactivities of partially inbred strains of salamanders (A. mexicanum): preliminary studies. In: Immunologic phylogeny. Springer, Berlin, pp 315–324

    Chapter  Google Scholar 

  83. Reavill DR (2001) Amphibian skin diseases. Vet Clin North Am Exot Anim Pract 4(2):413–440, vi. https://doi.org/10.1016/s1094-9194(17)30038-5

  84. Reichenbach-Klinke H, Elkan E (2013) The principal diseases of lower vertebrates. Elsevier

    Google Scholar 

  85. Bollinger TK, Mao J, Schock D, Brigham RM, Chinchar VG (1999) Pathology, isolation, and preliminary molecular characterization of a novel iridovirus from tiger salamanders in Saskatchewan. J Wildl Dis 35(3):413–429. https://doi.org/10.7589/0090-3558-35.3.413

    Article  CAS  PubMed  Google Scholar 

  86. Collins JP, Brunner JL, Jancovich JK, Schock DM (2004) A model host-pathogen system for studying infectious disease dynamics in amphibians: tiger salamanders (Ambystoma tigrinum) and Ambystoma tigrinum virus. Herpetol J 14:195–200

    Google Scholar 

  87. Donnelly TM, Davidson EW, Jancovich JK, Borland S, Newberry M, Gresens J (2003) What’s your diagnosis? Ranavirus infection. Lab Anim 32(3):23–25

    Google Scholar 

  88. Flechoso MF, Alarcos G, Jara R (2019) Primer caso documentado de ranavirosis en Castilla y León en una población de gallipato, Pleurodeles waltl Michahelles, 1830. Bol Asoc Herpetol Esp 30(1):48–52

    Google Scholar 

  89. Green DE, Converse KA, Schrader AK (2002) Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001. Ann N Y Acad Sci 969(1):323–339

    Article  PubMed  Google Scholar 

  90. Chambers DL, Hulse AC (2006) Salmonella serovars in the herpetofauna of Indiana County, Pennsylvania. Appl Environ Microbiol 72(5):3771–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Loh R (2015) Common disease conditions in axolotls. In: 40th World Small Animal Veterinary Association Congress, Bangkok, Thailand, 15–18 May, 2015. Proceedings book. World Small Animal Veterinary Association, pp 640–642

    Google Scholar 

  92. Recuero E, Cruzado-Cortes J, Parra-Olea G, Zamudio KR (2010) Urban aquatic habitats and conservation of highly endangered species: the case of Ambystoma mexicanum (Caudata, Ambystomatidae). Ann Zool Fenn, JSTOR 47:223–238

    Article  Google Scholar 

  93. Wardrip CL, Seps SL, Skrocki L, Nguyen L, Waterstrat PR (1999) Diagnostic exercise: fluffy, white, cotton candylike growth on the gills, fins, and skin of salamanders (Ambystoma tigrinum). J Am Assoc Lab Anim Sci 38(1):81–83

    Google Scholar 

  94. Pritchett KR, Sanders GE (2007) Epistylididae ectoparasites in a colony of African clawed frogs (Xenopus laevis). J Am Assoc Lab Anim Sci 46(2):86–91

    CAS  PubMed  Google Scholar 

  95. Del-Pozo J, Girling S, Pizzi R, Mancinelli E, Else R (2011) Severe necrotizing myocarditis caused by Serratia marcescens infection in an axolotl (Ambystoma mexicanum). J Comp Pathol 144(4):334–338

    Article  CAS  PubMed  Google Scholar 

  96. Bryan LK, Baldwin CA, Gray MJ, Miller DL (2009) Efficacy of select disinfectants at inactivating Ranavirus. Dis Aquat Org 84(2):89–94

    Article  CAS  Google Scholar 

  97. Webb R, Mendez D, Berger L, Speare R (2007) Additional disinfectants effective against the amphibian chytrid fungus Batrachochytrium dendrobatidis. Dis Aquat Org 74(1):13–16

    Article  CAS  Google Scholar 

  98. Johnson ML, Berger L, Philips L, Speare R (2003) Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Org 57(3):255–260

    Article  CAS  Google Scholar 

  99. Gold KK, Reed PD, Bemis DA, Miller DL, Gray MJ, Souza MJ (2013) Efficacy of common disinfectants and terbinafine in inactivating the growth of Batrachochytrium dendrobatidis in culture. Dis Aquat Org 107(1):77–81

    Article  CAS  Google Scholar 

  100. Van Rooij P, Pasmans F, Coen Y, Martel A (2017) Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans. PLoS One 12(10):e0186269

    Article  PubMed  PubMed Central  Google Scholar 

  101. Miguel E, Grosbois V, Caron A, Pople D, Roche B, Donnelly CA (2020) A systemic approach to assess the potential and risks of wildlife culling for infectious disease control. Commun Biol 3(1):1–14

    Article  Google Scholar 

  102. Farkas JE, Monaghan JR (2015) Housing and maintenance of Ambystoma mexicanum, the Mexican axolotl. In: Salamanders in regeneration research. Springer, New York, pp 27–46

    Google Scholar 

  103. Nugas CA (1996) Axolotl Larvae housing methods. Axolotl Newsl 25:6–9

    Google Scholar 

  104. Keller LR, Evans JH, Keller TC (1999) Experimental developmental biology: a laboratory manual. Academic Press, San Diego

    Google Scholar 

  105. Nichols DK (2000) Amphibian respiratory diseases. Vet Clin North Am Exot Anim Pract 3(2):551–554

    Article  CAS  PubMed  Google Scholar 

  106. Gresens J (2004) An introduction to the Mexican axolotl (Ambystoma mexicanum). Lab Anim 33(9):41–47

    Article  Google Scholar 

  107. Blooi M, Pasmans F, Rouffaer L, Haesebrouck F, Vercammen F, Martel A (2015) Successful treatment of Batrachochytrium salamandrivorans infections in salamanders requires synergy between voriconazole, polymyxin E and temperature. Sci Rep 5:11788. https://doi.org/10.1038/srep11788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Blooi M, Martel A, Haesebrouck F, Vercammen F, Bonte D, Pasmans F (2015) Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans. Sci Rep 5(1):1–4

    Article  Google Scholar 

  109. Duhon S (1994) Short guide to axolotl husbandry. Indiana University Axolotl Colony Press. USA, 1994

    Google Scholar 

  110. Ginsburg MF, Twersky LH, Cohen WD (1987) Ambystoma embryo development after cold storage. Axolotl Newsl 16:3

    Google Scholar 

  111. Becker MH, Brucker RM, Schwantes CR, Harris RN, Minbiole KP (2009) The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microbiol 75(21):6635–6638. https://doi.org/10.1128/AEM.01294-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Harris RN, Lauer A, Simon MA, Banning JL, Alford RA (2009) Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis Aquat Org 83(1):11–16

    Article  Google Scholar 

  113. Muletz-Wolz CR, Almario JG, Barnett SE, DiRenzo GV, Martel A, Pasmans F, Zamudio KR, Toledo LF, Lips KR (2017) Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front Microbiol 8:1551

    Article  PubMed  PubMed Central  Google Scholar 

  114. Muletz Wolz CR, Yarwood SA, Campbell Grant EH, Fleischer RC, Lips KR (2018) Effects of host species and environment on the skin microbiome of Plethodontid salamanders. J Anim Ecol 87(2):341–353

    Article  PubMed  Google Scholar 

  115. Spitzen-van der Sluijs A, Stegen G, Bogaerts S, Canessa S, Steinfartz S, Janssen N, Bosman W, Pasmans F, Martel A (2018) Post-epizootic salamander persistence in a disease-free refugium suggests poor dispersal ability of Batrachochytrium salamandrivorans. Sci Rep 8(1):1–8

    Article  CAS  Google Scholar 

  116. Smith SA (2007) Appendix: compendium of drugs and compounds used in amphibians. ILAR J 48(3):297–300. https://doi.org/10.1093/ilar.48.3.297

    Article  CAS  PubMed  Google Scholar 

  117. Inoue S, Singer M (1970) Lymphosarcomatous disease of the newt, Triturus pyrrhogaster. In: Comparative leukemia research 1969, vol 36. Karger Publishers, Basel, pp 640–641

    Google Scholar 

  118. Li WT, Chang HW, Pang VF, Wang FI, Liu CH, Chen TY, Guo JC, Wada T, Jeng CR (2017) Mycolactone-producing Mycobacterium marinum infection in captive Hong Kong warty newts and pathological evidence of impaired host immune function. Dis Aquat Org 123(3):239–249. https://doi.org/10.3354/dao03092

    Article  CAS  Google Scholar 

  119. Fukano H, Yoshida M, Shimizu A, Iwao H, Katayama Y, Omatsu T, Mizutani T, Kurata O, Wada S, Hoshino Y (2018) Draft genome sequence of Mycobacterium montefiorense isolated from Japanese black salamander (Hynobius nigrescens). Genome Announc 6(21):e00448-18. https://doi.org/10.1128/genomeA.00448-18

    Article  PubMed  PubMed Central  Google Scholar 

  120. Collymore C, Crim MJ, Lieggi C (2016) Recommendations for health monitoring and reporting for zebrafish research facilities. Zebrafish 13(Suppl 1):S138–S148. https://doi.org/10.1089/zeb.2015.1210

    Article  PubMed  Google Scholar 

  121. Cheatsazan H, de Almedia APLG, Russell AF, Bonneaud C (2013) Experimental evidence for a cost of resistance to the fungal pathogen, Batrachochytrium dendrobatidis, for the palmate newt, Lissotriton helveticus. BMC Ecol 13(1):1–11

    Article  Google Scholar 

  122. Kent ML, Harper C, Wolf JC (2012) Documented and potential research impacts of subclinical diseases in zebrafish. ILAR J 53(2):126–134. https://doi.org/10.1093/ilar.53.2.126

    Article  CAS  PubMed  Google Scholar 

  123. Crim MJ, Riley LK (2012) Viral diseases in zebrafish: what is known and unknown. ILAR J 53(2):135–143. https://doi.org/10.1093/ilar.53.2.135

    Article  CAS  PubMed  Google Scholar 

  124. Lyte M, Varcoe JJ, Bailey MT (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65(1):63–68

    Article  CAS  PubMed  Google Scholar 

  125. Kent ML, Bishop-Stewart JK, Matthews JL, Spitsbergen JM (2002) Pseudocapillaria tomentosa, a nematode pathogen, and associated neoplasms of zebrafish (Danio rerio) kept in research colonies. Comp Med 52(4):354–358

    CAS  PubMed  Google Scholar 

  126. Tomás A, Fernandes LT, Sánchez A, Segalés J (2010) Time course differential gene expression in response to porcine circovirus type 2 subclinical infection. Vet Res 41(1):1–16

    Article  Google Scholar 

  127. Yu F, Bruce L, Calder AG, Milne E, Coop R, Jackson F, Horgan G, MacRae J (2000) Subclinical infection with the nematode Trichostrongylus colubriformis increases gastrointestinal tract leucine metabolism and reduces availability of leucine for other tissues. J Anim Sci 78(2):380–390

    Article  CAS  PubMed  Google Scholar 

  128. Fosgate GT (2009) Practical sample size calculations for surveillance and diagnostic investigations. J Vet Diagn Investig 21(1):3–14

    Article  Google Scholar 

  129. Simon R, Schtll W (1984) Tables of sample size requirements for detection of fish infected by pathogens: three confidence levels for different infection prevalence and various population sizes. J Fish Dis 7(6):515–520

    Article  Google Scholar 

  130. Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43(4):207–213

    Article  CAS  PubMed  Google Scholar 

  131. Crim MJ (2020) Viral diseases. In: Cartner S, Eisen JS, Farmer S, Guillemin K, Kent ML, Sanders GE (eds) The zebrafish in biomedical research: biology, husbandry, diseases, and research applications, 1st edn. Academic Press, pp 509–526. https://doi.org/10.1016/B978-0-12-812431-4.00042-7

    Chapter  Google Scholar 

  132. Armstrong JB, Malacinski GM (1989) Developmental biology of the axolotl. Oxford University Press, Oxford

    Google Scholar 

  133. Brothers A (1977) Instructions for the care and feeding of axolotls. Axolotl Newsl 3:9–16

    Google Scholar 

  134. Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5(6):e10957. https://doi.org/10.1371/journal.pone.0010957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Interests

Marcus J. Crim and Marcia L. Hart are employees of IDEXX BioAnalytics, a division of IDEXX Laboratories, Inc., a company that provides veterinary diagnostics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus J. Crim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crim, M.J., Hart, M.L. (2023). Health Monitoring for Laboratory Salamanders. In: Seifert, A.W., Currie, J.D. (eds) Salamanders. Methods in Molecular Biology, vol 2562. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2659-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2658-0

  • Online ISBN: 978-1-0716-2659-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics