Skip to main content

Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer’s Disease

  • Protocol
  • First Online:
Alzheimer’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2561))

Abstract

Alzheimer’s disease (AD) is a common neurodegenerative disorder and a mechanistically complex disease. For the last decade, human models of AD using induced pluripotent stem cells (iPSCs) have emerged as a powerful way to understand disease pathogenesis in relevant human cell types. In this review, we summarize the state of the field and how this technology can apply to studies of both familial and sporadic studies of AD. We discuss patient-derived iPSCs, genome editing, differentiation of neural cell types, and three-dimensional organoids, and speculate on the future of this type of work for increasing our understanding of, and improving therapeutic development for, this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cataldo AM et al (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157(1):277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Serrano-Pozo A et al (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189

    Article  PubMed  PubMed Central  Google Scholar 

  3. Giandomenico SL, Sutcliffe M, Lancaster MA (2021) Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat Protoc 16(2):579–602

    Article  CAS  PubMed  Google Scholar 

  4. Shou Y et al (2020) The application of brain organoids: from neuronal development to neurological diseases. Front Cell Dev Biol 8:579659

    Article  PubMed  PubMed Central  Google Scholar 

  5. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  7. Kang X et al (2015) Effects of integrating and non-integrating reprogramming methods on copy number variation and genomic stability of human induced pluripotent stem cells. PLoS One 10(7):e0131128

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miura K et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745

    Article  CAS  PubMed  Google Scholar 

  9. Ma X, Kong L, Zhu S (2017) Reprogramming cell fates by small molecules. Protein Cell 8(5):328–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weltner J, Trokovic R (2021) Reprogramming of fibroblasts to human iPSCs by CRISPR activators. Methods Mol Biol 2239:175–198

    Article  CAS  PubMed  Google Scholar 

  11. Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  CAS  PubMed  Google Scholar 

  12. Ye L et al (2013) Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Transl Med 2(8):558–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gore A et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Assou S et al (2020) Recurrent genetic abnormalities in human pluripotent stem cells: definition and routine detection in culture supernatant by targeted droplet digital PCR. Stem Cell Rep 14(1):1–8

    Article  CAS  Google Scholar 

  15. Buta C et al (2013) Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res 11(1):552–562

    Article  PubMed  Google Scholar 

  16. Rose SE et al (2018) Leptomeninges-derived induced pluripotent stem cells and directly converted neurons from autopsy cases with varying neuropathologic backgrounds. J Neuropathol Exp Neurol 77:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Young JE et al (2015) Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16(4):373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chambers SM et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim DS et al (2010) Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev Rep 6(2):270–281

    Article  CAS  PubMed  Google Scholar 

  20. Shi Y et al (2012) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15(3):477–486. S1

    Article  CAS  PubMed  Google Scholar 

  21. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7(10):1836–1846

    Article  CAS  PubMed  Google Scholar 

  22. Shi Y et al (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4(124):124ra29

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maroof AM et al (2013) Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12(5):559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan SH et al (2011) Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One 6(3):e17540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Israel MA et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knupp A et al (2020) Depletion of the AD risk gene SORL1 selectively impairs neuronal endosomal traffic independent of amyloidogenic APP processing. Cell Rep 31(9):107719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Kant R et al (2019) Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-beta in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell 24(3):363–375. e9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Woodruff G et al (2016) Defective transcytosis of APP and lipoproteins in human iPSC-derived neurons with familial Alzheimer’s disease mutations. Cell Rep 17(3):759–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woodruff G et al (2013) The presenilin-1 DeltaE9 mutation results in reduced gamma-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep 5(4):974–985

    Article  CAS  PubMed  Google Scholar 

  30. Young JE et al (2018) Stabilizing the Retromer complex in a human stem cell model of Alzheimer’s disease reduces TAU phosphorylation independently of amyloid precursor protein. Stem Cell Rep 10(3):1046–1058

    Article  CAS  Google Scholar 

  31. Vierbuchen T et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mertens J et al (2015) Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17(6):705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D’Souza GX et al (2020) The application of in vitro-derived human neurons in neurodegenerative disease modeling. J Neurosci Res 99:124–140

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78(5):785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang C et al (2017) Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening. Stem Cell Rep 9(4):1221–1233

    Article  CAS  Google Scholar 

  36. Babcock KR et al (2021) Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports 16:681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Puma DD, Piacentini R, Grassi C (2020) Does impairment of adult neurogenesis contribute to pathophysiology of Alzheimer’s disease? A still open question. Front Mol Neurosci 13:578211

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y et al (2020) GABAergic inhibitory interneuron deficits in Alzheimer’s disease: implications for treatment. Front Neurosci 14:660

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang N et al (2017) Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 14(6):621–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abud EM et al (2017) iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94(2):278–293. e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McQuade A et al (2018) Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener 13(1):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Russo FB et al (2018) Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biol Psychiatry 83(7):569–578

    Article  PubMed  Google Scholar 

  43. Yao H et al (2016) The Na(+)/HCO3(−) co-transporter is protective during ischemia in astrocytes. Neuroscience 339:329–337

    Article  CAS  PubMed  Google Scholar 

  44. Fong LK et al (2018) Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-beta clearance in human astrocytes. J Biol Chem 293(29):11341–11357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Douvaras P, Fossati V (2015) Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc 10(8):1143–1154

    Article  CAS  PubMed  Google Scholar 

  46. Ehrlich M et al (2017) Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A 114(11):E2243–E2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lancaster MA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  PubMed  Google Scholar 

  48. Kadoshima T et al (2013) Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A 110(50):20284–20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krefft O et al (2018) Generation of standardized and reproducible forebrain-type cerebral organoids from human induced pluripotent stem cells. J Vis Exp 131:e56768

    Google Scholar 

  50. Birey F et al (2017) Assembly of functionally integrated human forebrain spheroids. Nature 545(7652):54–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trujillo CA et al (2019) Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25(4):558–569. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ormel PR et al (2018) Microglia innately develop within cerebral organoids. Nat Commun 9(1):4167

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang DY, Song H, Ming G (2021) Modeling neurological disorders using brain organoids. Semin Cell Dev Biol 111:4–14

    Article  PubMed  Google Scholar 

  54. Choi SH et al (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515(7526):274–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gonzalez C et al (2018) Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry 23(12):2363–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin YT et al (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98:1141–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kwart D et al (2019) A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP beta-CTFs, not Aβ. Neuron 104(2):256–270. e5

    Article  CAS  PubMed  Google Scholar 

  58. Yagi T et al (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20(23):4530–4539

    Article  CAS  PubMed  Google Scholar 

  59. Kondo T et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12(4):487–496

    Article  CAS  PubMed  Google Scholar 

  60. Liu Q et al (2014) Effect of potent gamma-secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers. JAMA Neurol 71(12):1481–1489

    Article  PubMed  PubMed Central  Google Scholar 

  61. Paquet D et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601):125–129

    Article  CAS  PubMed  Google Scholar 

  62. Ortiz-Virumbrales M et al (2017) CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 (N141I) neurons. Acta Neuropathol Commun 5(1):77

    Article  PubMed  PubMed Central  Google Scholar 

  63. Muratore CR et al (2014) The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 23(13):3523–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raja WK et al (2016) Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS One 11(9):e0161969

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cataldo AM et al (2008) Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects. Am J Pathol 173(2):370–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Langness VF et al (2021) Cholesterol-lowering drugs reduce APP processing to Abeta by inducing APP dimerization. Mol Biol Cell 32(3):247–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51

    Article  CAS  PubMed  Google Scholar 

  68. Flamier A et al (2018) Modeling late-onset sporadic Alzheimer’s disease through BMI1 deficiency. Cell Rep 23(9):2653–2666

    Article  CAS  PubMed  Google Scholar 

  69. Meyer K et al (2019) REST and neural gene network dysregulation in iPSC models of Alzheimer’s disease. Cell Rep 26(5):1112–1127. e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Corder EH et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7(2):180–184

    Article  CAS  PubMed  Google Scholar 

  71. Farrer LA et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278(16):1349–1356

    Article  CAS  PubMed  Google Scholar 

  72. Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2(3):a006312

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang C et al (2018) Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 24(5):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sullivan SE et al (2019) Candidate-based screening via gene modulation in human neurons and astrocytes implicates FERMT2 in Abeta and TAU proteostasis. Hum Mol Genet 28(5):718–735

    Article  CAS  PubMed  Google Scholar 

  75. Fjorback AW et al (2012) Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci 32(4):1467–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robbins JP et al (2018) Clusterin is required for beta-amyloid toxicity in human iPSC-derived neurons. Front Neurosci 12:504

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lidstrom AM et al (1998) Clusterin (apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer’s disease. Exp Neurol 154(2):511–521

    Article  CAS  PubMed  Google Scholar 

  78. Pottier C et al (2013) TREM2 R47H variant as a risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis 35(1):45–49

    Article  CAS  PubMed  Google Scholar 

  79. Brownjohn PW et al (2018) Functional studies of missense TREM2 mutations in human stem cell-derived microglia. Stem Cell Rep 10(4):1294–1307

    Article  CAS  Google Scholar 

  80. Martins S et al (2020) IPSC-derived neuronal cultures carrying the Alzheimer’s disease associated TREM2 R47H variant enables the construction of an Aβ-induced gene regulatory network. Int J Mol Sci 21(12):4516

    Article  CAS  PubMed Central  Google Scholar 

  81. Miller JD et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tagliafierro L, Zamora ME, Chiba-Falek O (2019) Multiplication of the SNCA locus exacerbates neuronal nuclear aging. Hum Mol Genet 28(3):407–421

    Article  CAS  PubMed  Google Scholar 

  83. Cohen-Carmon D et al (2020) Progerin-induced transcriptional changes in Huntington’s disease human pluripotent stem cell-derived neurons. Mol Neurobiol 57(3):1768–1777

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Young, J.E., Goldstein, L.S.B. (2023). Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer’s Disease. In: Chun, J. (eds) Alzheimer’s Disease. Methods in Molecular Biology, vol 2561. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2655-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2655-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2654-2

  • Online ISBN: 978-1-0716-2655-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics