Skip to main content

The Use of Optical Coherence Tomography in Evaluation of Retinitis Pigmentosa

Part of the Methods in Molecular Biology book series (MIMB,volume 2560)

Abstract

Optical coherence tomography (OCT) is a noninvasive imaging technology that has gained widespread use in the evaluation of multiple retinal pathologies, including retinitis pigmentosa (RP). OCT allows for visualization of distinct retinal layers and the choroid and facilitates study of morphological features associated with RP. OCT can be used to detect and to track progression of RP, as well as to correlate structural findings with functional manifestations of the disease. This chapter provides a basic overview of OCT technology and details elements of importance in the use of OCT for diagnosis and assessment of progression of RP.

Key words

  • Choroid
  • Genetic mutation
  • Optical coherence tomography
  • Photoreceptors
  • Retinal dystrophy
  • Retinal pigment epithelium (RPE)
  • Retina
  • Retinitis pigmentosa

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2651-1_8
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2651-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fujimoto J, Swanson E (2016) The development, commercialization, and impact of optical coherence tomography. Investig Ophthalmol Vis Sci 57:OCT1–OCT13

    CrossRef  Google Scholar 

  2. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    CrossRef  CAS  Google Scholar 

  3. Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs time domain optical coherence tomography. Opt Express 11:889

    CrossRef  CAS  Google Scholar 

  4. Wojtkowski M, Leitgeb R, Kowalczyk A et al (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457

    CrossRef  Google Scholar 

  5. Yaqoob Z, Wu J, Yang C (2005) Spectral domain optical coherence tomography: a better OCT imaging strategy. BioTechniques 39:S6–S13

    CrossRef  Google Scholar 

  6. Theelen T, Teussink MM (2018) Inspection of the human retina by optical coherence tomography. In: Boon C, Wijnholds J (eds) Retinal gene therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_26

  7. Zysk AM, Nguyen FT, Oldenburg AL et al (2007) Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt 12:051403

    CrossRef  Google Scholar 

  8. Tsang SH and Sharma T (2018) Optical coherence tomography BT - atlas of inherited retinal diseases, presented at the

    Google Scholar 

  9. Zhang Q (2016) Retinitis pigmentosa. Asia-Pacific J Ophthalmol 5:265–271

    CrossRef  CAS  Google Scholar 

  10. Rangaswamy NV, Patel HM, Locke KG et al (2010) A comparison of visual field sensitivity to photoreceptor thickness in retinitis pigmentosa. Invest Opthalmol Vis Sci 51:4213

    CrossRef  Google Scholar 

  11. Ramachandran R, Zhou L, Locke KG et al (2013) A comparison of methods for tracking progression in X-linked retinitis pigmentosa using frequency domain OCT. Transl Vis Sci Technol 2:5

    CrossRef  Google Scholar 

  12. Hariri AH, Zhang HY, Ho A et al (2016) Quantification of ellipsoid zone changes in retinitis pigmentosa using en face spectral domain-optical coherence tomography. JAMA Ophthalmol 134:628–635

    CrossRef  Google Scholar 

  13. Sujirakul T, Lin MK, Duong J, Wei Y, Lopez-Pintado S, Tsang SH (2015) Multimodal imaging of central retinal disease progression in a 2-year mean follow-up of retinitis pigmentosa. Am J Ophthalmol 160(4):786–798 e784

    CrossRef  Google Scholar 

  14. Cabral T, Lima de Carvalho JR Jr, Kim J, Oh JK, Levi SR, Park KS, Duong JK, Park J, Boudreault K, Belfort R Jr, Tsang SH (2020) Comparative analysis of functional and structural decline in retinitis pigmentosas. Int J Mol Sci 21(8)

    Google Scholar 

  15. Birch DG, Locke KG, Wen Y, Locke KI, Hoffman DR, Hood DC (2013) Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa. JAMA Ophthalmol 131(9):1143–1150

    CrossRef  Google Scholar 

  16. Hood DC, Ramachandran R, Holopigian K et al (2011) Method for deriving visual field boundaries from OCT scans of patients with retinitis pigmentosa. Biomed Opt Express 2:1106

    CrossRef  Google Scholar 

  17. Jauregui R, Takahashi VKL, Park KS, Cui X, Takiuti JT, Lima de Carvalho JR Jr, Tsang SH (2019) Multimodal structural disease progression of retinitis pigmentosa according to mode of inheritance. Sci Rep 9(1):10712

    CrossRef  Google Scholar 

  18. Fishman GA (1978) Retinitis pigmentosa. Visual loss. Arch Ophthalmol 96(7):1185–1188

    CrossRef  CAS  Google Scholar 

  19. Fishman GA, Farber MD, Derlacki DJ (1988) X-linked retinitis pigmentosa. Profile of clinical findings. Arch Ophthalmol 106(3):369–375

    CrossRef  CAS  Google Scholar 

  20. Ragi SD, De Carvalho JRL, Tanaka AJ et al (2019) Compound heterozygous novel frameshift variants in the PROM1 gene result in Leber congenital amaurosis. Cold Spring Harb Mol Case Stud 5:a004481

    CrossRef  Google Scholar 

  21. Liu G, Liu X, Li H et al (2016) Optical coherence tomographic analysis of retina in retinitis pigmentosa patients. Ophthalmic Res 56:111–122

    CrossRef  Google Scholar 

  22. Hood DC, Lin CE, Lazow MA et al (2009) Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Investig Ophthalmol Vis Sci 50:2328–2336

    CrossRef  Google Scholar 

  23. Hood DC, Lazow MA, Locke KG et al (2011) The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:101

    CrossRef  Google Scholar 

  24. Acton JH, Greenberg JP, Greenstein VC et al (2013) Evaluation of multimodal imaging in carriers of X-linked retinitis pigmentosa. Exp Eye Res 113:41–48

    CrossRef  CAS  Google Scholar 

  25. Santos A, Humayun MS, de Juan E Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115(4):511–515

    CrossRef  CAS  Google Scholar 

  26. Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, Bandello F, Souied E (2013) Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 229(1):32–37

    CrossRef  Google Scholar 

  27. Kuroda M, Hirami Y, Hata M et al (2014) Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa. Clin Ophthalmol 8:435–440

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Min Kim .

Editor information

Editors and Affiliations

Ethics declarations

Stephen H. Tsang receives financial support from Abeona Therapeutics, Inc and Emendo. He is also the founder of Rejuvitas and is on the scientific and clinical advisory board for Nanoscope Therapeutics.

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Kim, H.M., Oh, J.K., Tsang, S.H. (2023). The Use of Optical Coherence Tomography in Evaluation of Retinitis Pigmentosa. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols