Skip to main content

Whole Genome Sequencing for Detection of Structural Variants in Patients with Retinitis Pigmentosa

  • Protocol
  • First Online:
Retinitis Pigmentosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2560))

Abstract

Retinitis pigmentosa (RP) is a group of inherited retinal diseases characterized by the progressive degeneration of rod then cone photoreceptors. Most of the known mutations that cause RP reside in the protein-coding portions of DNA; however, a growing number of pathogenic mutations have been identified within the non-coding portions. This chapter details a brief method for the detection of structural variants throughout the genome for the identification of novel mutations and to ultimately provide patients with a precise molecular diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncan JL et al (2018) Inherited retinal degenerations: current landscape and knowledge gaps. Transl Vis Sci Technol 7(4):6. https://doi.org/10.1167/tvst.7.4.6

    Article  Google Scholar 

  2. Koch SF et al (2015) Halting progressive neurodegeneration in advanced retinitis pigmentosa. J Clin Invest 125(9):3704–3713. https://doi.org/10.1172/JCI82462

    Article  Google Scholar 

  3. Sudmant PH et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526(7571):75–81. https://doi.org/10.1038/nature15394

    Article  CAS  Google Scholar 

  4. Teo SM et al (2012) Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics 28(21):2711–2718. https://doi.org/10.1093/bioinformatics/bts535

    Article  CAS  Google Scholar 

  5. Robinson JT et al (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  Google Scholar 

  6. Travers KJ et al (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38(15):e159. https://doi.org/10.1093/nar/gkq543

    Article  CAS  Google Scholar 

  7. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  Google Scholar 

  8. Biosciences P (2021) pbsv - PacBio structural variant (SV) calling and analysis tools. Available from: https://github.com/PacificBiosciences/pbsv

  9. Tattini L, D’Aurizio R, Magi A (2015) Detection of genomic structural variants from next-generation sequencing data. Front Bioeng Biotechnol 3:92. https://doi.org/10.3389/fbioe.2015.00092

    Article  Google Scholar 

  10. Huddleston J et al (2017) Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res 27(5):677–685. https://doi.org/10.1101/gr.214007.116

    Article  CAS  Google Scholar 

  11. Spielmann M, Mundlos S (2016) Looking beyond the genes: the role of non-coding variants in human disease. Hum Mol Genet 25(R2):R157–R165. https://doi.org/10.1093/hmg/ddw205

    Article  CAS  Google Scholar 

  12. Procedure & checklist – Preparing gDNA libraries using the SMRTbell® express template preparation kit 2.0. 2019

    Google Scholar 

  13. Mills RE et al (2011) Mapping copy number variation by population-scale genome sequencing. Nature 470(7332):59–65. https://doi.org/10.1038/nature09708

    Article  CAS  Google Scholar 

  14. Roberts RJ, Carneiro MO, Schatz MC (2013) The advantages of SMRT sequencing. Genome Biol 14(7):405. https://doi.org/10.1186/gb-2013-14-6-405

    Article  Google Scholar 

  15. User Manual: g-TUBE. 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander H. Chai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chai, A.H. (2023). Whole Genome Sequencing for Detection of Structural Variants in Patients with Retinitis Pigmentosa. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics