Skip to main content

Molecular Genetic Testing Approaches for Retinitis Pigmentosa

  • Protocol
  • First Online:
Retinitis Pigmentosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2560))

Abstract

Retinitis pigmentosa (RP) affects approximately 1 in 4000 individuals. It has many different genetic etiologies and therefore diagnosis can be challenging. Understanding the different testing methodologies is beneficial for clinicians and researchers in order to select the best testing method, whether it be panel testing, whole exome sequencing, or whole genome sequencing for individuals affected with RP. The Methods section also outlines the steps required to complete a WES assay, which has become a popular method for identifying the molecular diagnosis for individuals with RP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahim AT, Daiger SP, Weleber RG (1993) In: Adam MP et al (eds) Nonsyndromic retinitis pigmentosa overview, GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1417/

  2. Ferrari S et al (2011) Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 12(4):238–249

    Article  CAS  Google Scholar 

  3. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809

    Article  CAS  Google Scholar 

  4. Daiger SP (2020) RetNet retinal information network. The University of Texas Health Science Center, Houston

    Google Scholar 

  5. ClinVar. National Center of Biotechnology Information (NCBI). [cited 2019

    Google Scholar 

  6. Fokkema I, Den-Dunnen JT, Taschner P (2009) RPGR. Available from: rpgr.hgu.mrc.ac.uk/index.php?select_db=RPGR

    Google Scholar 

  7. Chang S et al (2011) Diagnostic challenges in retinitis pigmentosa: genotypic multiplicity and phenotypic variability. Curr Genomics 12(4):267–275

    Article  CAS  Google Scholar 

  8. Hui P (2014) Next generation sequencing: chemistry, technology and applications. Top Curr Chem 336:1–18

    CAS  Google Scholar 

  9. Priest JR (2017) A primer to clinical genome sequencing. Curr Opin Pediatr 29(5):513–519

    Article  CAS  Google Scholar 

  10. Mu W et al (2016) Sanger confirmation is required to achieve optimal sensitivity and specificity in next-generation sequencing panel testing. J Mol Diagn 18(6):923–932

    Article  CAS  Google Scholar 

  11. Sikkema-Raddatz B et al (2013) Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat 34(7):1035–1042

    Article  CAS  Google Scholar 

  12. Muzzey D, Evans EA, Lieber C (2015) Understanding the basics of NGS: from mechanism to variant calling. Curr Genet Med Rep 3(4):158–165

    Article  Google Scholar 

  13. Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  Google Scholar 

  14. Caspar SM et al (2018) Clinical sequencing: from raw data to diagnosis with lifetime value. Clin Genet 93(3):508–519

    Article  CAS  Google Scholar 

  15. Rieber N et al (2013) Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies. PLoS One 8(6):e66621

    Article  CAS  Google Scholar 

  16. Adams DR, Eng CM (2018) Next-generation sequencing to diagnose suspected genetic disorders. N Engl J Med 379(14):1353–1362

    Article  CAS  Google Scholar 

  17. Consugar MB et al (2015) Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. Genet Med 17(4):253–261

    Article  CAS  Google Scholar 

  18. Farwell KD et al (2015) Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med 17(7):578–586

    Article  CAS  Google Scholar 

  19. Kalia SS et al (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19(2):249–255

    Article  Google Scholar 

  20. Meienberg J et al (2016) Clinical sequencing: is WGS the better WES? Hum Genet 135(3):359–362

    Article  CAS  Google Scholar 

  21. Meynert AM et al (2014) Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics 15:247

    Article  Google Scholar 

  22. Riera M et al (2017) Whole exome sequencing using Ion Proton system enables reliable genetic diagnosis of inherited retinal dystrophies. Sci Rep 7:42078

    Article  CAS  Google Scholar 

  23. de Castro-Miro M et al (2016) Novel candidate genes and a wide spectrum of structural and point mutations responsible for inherited retinal dystrophies revealed by exome sequencing. PLoS One 11(12):e0168966

    Article  Google Scholar 

  24. Lee K et al (2015) High diagnostic yield of whole exome sequencing in participants with retinal dystrophies in a clinical ophthalmology setting. Am J Ophthalmol 160(2):354–363 e9

    Article  CAS  Google Scholar 

  25. Lionel AC et al (2018) Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 20(4):435–443

    Article  CAS  Google Scholar 

  26. Carss KJ et al (2017) Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am J Hum Genet 100(1):75–90

    Article  CAS  Google Scholar 

  27. Alfares A et al (2018) Whole-genome sequencing offers additional but limited clinical utility compared with reanalysis of whole-exome sequencing. Genet Med 20(11):1328–1333

    Article  CAS  Google Scholar 

  28. Schwarze K et al (2018) Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20(10):1122–1130

    Article  Google Scholar 

  29. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  Google Scholar 

  30. McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  Google Scholar 

  31. McLaren W et al (2016) The Ensembl variant effect predictor. Genome Biol 17(1):122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan Soucy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soucy, M., Tanaka, A.J., Dharmadhikari, A. (2023). Molecular Genetic Testing Approaches for Retinitis Pigmentosa. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics