Skip to main content

Ocular Injection Techniques for Retinitis Pigmentosa: Intravitreal, Subretinal, and Suprachoroidal

  • Protocol
  • First Online:
Retinitis Pigmentosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2560))

Abstract

Ocular gene therapy represents an emerging and promising therapeutic approach for the treatment of several of the inherited retinal diseases. Currently, the focus has been to investigate monogenic inherited retinal disorders. Genetic and cellular therapies can be delivered to the eye by various injection techniques, including those that are intravitreal, subretinal, and suprachoroidal. Each of these three delivery methods are discussed with regard to their historical background, indications, surgical steps, and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer A (2017) FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. US Food and Drug Administration, https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss. Accessed 27 Jan 2020

    Google Scholar 

  2. Ohm J (1911) Über die Behandlung der Netzhautablösung durch operative Entleerung der subretinalen Flüssigkeit und Einspritzung von Luft in den Glaskörper [On the treatment of retinal detachment by surgical evacuation of subretinal fluid and injection of air into the vitreous]. Albrecht Von Graefes Arch Für Ophthalmol 79(3):442–450

    Article  Google Scholar 

  3. Schneider J, Frankel SS (1947) Treatment of late postoperative intraocular infections with intraocular injection of penicillin. Arch Ophthalmol 37:304–307

    Article  CAS  Google Scholar 

  4. DeLap R (1998) Vitravene Approval Letter. U.S. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20961_Vitravene_Approv.pdf. Accessed 27 Jan 2020

    Google Scholar 

  5. Avery RL, Bakri SJ, Blumenkranz MS et al (2014) Intravitreal injection technique and monitoring. Retina 34(Suppl 12):S1–S18. https://doi.org/10.1097/IAE.0000000000000399

    Article  CAS  Google Scholar 

  6. Blaese RM, Culver KW, Miller AD et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270(5235):475–480

    Article  CAS  Google Scholar 

  7. Gupta PR, Huckfeldt RM (2017) Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 14(5):051002. https://doi.org/10.1088/1741-2552/aa7a27

    Article  Google Scholar 

  8. Tabandeh H, Boscia F, Sborgia A et al (2014) Endophthalmitis associated with intravitreal injections: office-based setting and operating room setting. Retina 34(1):18–23. https://doi.org/10.1097/IAE.0000000000000008

    Article  Google Scholar 

  9. Doshi RR, Bakri SJ, Fung AE (2011) Intravitreal injection technique. Semin Ophthalmol 26(3):104–113. https://doi.org/10.3109/08820538.2010.541318

    Article  Google Scholar 

  10. Yun C, Oh J, Hwang S-Y et al (2015) Subconjunctival hemorrhage after intravitreal injection of anti-vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol 253:1465–1470

    Article  CAS  Google Scholar 

  11. McCannel CA (2011) Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: causative organisms and possible prevention strategies. Retina 31(4):654–661. https://doi.org/10.1097/IAE.0b013e31820a67e4

    Article  CAS  Google Scholar 

  12. Bhavsar AR, Ip MS, Glassman AR et al (2007) The risk of endophthalmitis following intravitreal triamcinolone injection in the DRCRnet and SCORE clinical trials. Am J Ophthalmol 144(3):454–456

    Article  CAS  Google Scholar 

  13. Nelson ML, Tennant MT, Sivalingam A et al (2003) Infectious and presumed noninfectious endophthalmitis after intravitreal triamcinolone acetonide injection. Retina 23(5):686–691

    Article  Google Scholar 

  14. Sutter FK, Gillies MC (2003) Pseudo-endophthalmitis after intravitreal injection of triamcinolone. Br J Ophthalmol 87(8):972–974

    Article  CAS  Google Scholar 

  15. Karabag RY, Parlak M, Cetin G et al (2015) Retinal tears and rhegmatogenous retinal detachment after intravitreal injections: its prevalence and case reports. Digit J Ophthalmol 21(1):8–10. https://doi.org/10.5693/djo.01.2014.07.001

    Article  Google Scholar 

  16. Jager RD, Aiello LP, Patel SC et al (2004) Risks of intravitreous injection: a comprehensive review. Retina 24(5):676–698

    Article  Google Scholar 

  17. Shin YI, Sung JY, Sagong M et al (2018) Risk factors for breakthrough vitreous hemorrhage after intravitreal anti-VEGF injection in age-related macular degeneration with submacular hemorrhage. Sci Rep 8(1):10560. https://doi.org/10.1038/s41598-018-28938-1

    Article  CAS  Google Scholar 

  18. Cekiç O, Chang S, Tseng JJ et al (2005) Cataract progression after intravitreal triamcinolone injection. Am J Ophthalmol 139(6):993–998

    Article  Google Scholar 

  19. Thompson JT (2006) Cataract formation and other complications of intravitreal triamcinolone for macular edema. Am J Ophthalmol 141(4):629–637

    Article  CAS  Google Scholar 

  20. Pershing S, Bakri SJ, Moshfeghi DM (2013) Ocular hypertension and intraocular pressure asymmetry after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmic Surg Lasers Imaging Retina 44(5):460–464. https://doi.org/10.3928/23258160-20130909-07

    Article  Google Scholar 

  21. Hamill MB, Osato MS, Wilhelmus KR (1984) Experimental evaluation of chlorhexidine gluconate for ocular antisepsis. Antimicrob Agents Chemother 26(6):793–796

    Article  CAS  Google Scholar 

  22. Trinavarat A, Atchaneeyasakul LO, Nopmaneejumruslers C et al (2006) Reduction of endophthalmitis rate after cataract surgery with preoperative 5% povidone-iodine. Dermatology 212(Suppl 1):35–40

    Article  CAS  Google Scholar 

  23. Merani R, McPherson ZE, Luckie AP et al (2016) Aqueous chlorhexidine for intravitreal injection antisepsis: a case series and review of the literature. Ophthalmology 123(12):2588–2594. https://doi.org/10.1016/j.ophtha.2016.08.022

    Article  Google Scholar 

  24. Oakley CL, Vote BJ (2016) Aqueous chlorhexidine (0.1%) is an effective alternative to povidone-iodine for intravitreal injection prophylaxis. Acta Ophthalmol 94(8):e808–e809. https://doi.org/10.1111/aos.12981

    Article  CAS  Google Scholar 

  25. Storey PP, Tauqeer Z, Yonekawa Y et al (2019) The impact of prefilled syringes on endophthalmitis following intravitreal injection of ranibizumab. Am J Ophthalmol 199:200–208. https://doi.org/10.1016/j.ajo.2018.11.023

    Article  CAS  Google Scholar 

  26. Bakri SJ, Ekdawi NS (2008) Intravitreal silicone oil droplets after intravitreal drug injections. Retina 28(7):9961–9001

    Article  Google Scholar 

  27. Scott IU, Oden NL, VanVeldhuisen PC et al (2009) SCORE Study Report 7: incidence of intravitreal silicone oil droplets associated with staked-on vs luer cone syringe design. Am J Ophthalmol 148(5):725–732, e7

    Article  Google Scholar 

  28. Sassalos TM, Paulus YM (2019) Xy31Prefilled syringes for intravitreal drug delivery. Clin Ophthalmol 13:701–706. https://doi.org/10.2147/OPTH.S169044

    Article  CAS  Google Scholar 

  29. Xue K, MacLaren RE (2018) Ocular gene therapy for choroideremia: clinical trials and future perspectives. Expert Rev Ophthalmol 13(3):129–138

    Article  CAS  Google Scholar 

  30. Schon C, Biel M, Michalakis S (2014) Retinal gene delivery by adeno-associated virus (AAV) vectors: strategies and applications. Eur J Pharm Biopharm 95(Part B):343–352

    Google Scholar 

  31. Del Amo EM, Rimpelä AK, Heikkinen E et al (2017) Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 57:134–185

    Article  Google Scholar 

  32. Rai Udo J, Young SA, Thrimawithana TR et al (2015) The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today 20(4):491–495. https://doi.org/10.1016/j.drudis.2014.10.010

    Article  CAS  Google Scholar 

  33. Habot-Wilner Z, Noronha G, Wykoff CC (2019) Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: a targeted approach. Acta Ophthalmol 97(5):460–472. https://doi.org/10.1111/aos.14042

    Article  Google Scholar 

  34. Clearside Biomedical (2019) Clearside Biomedical announces license agreement with aura biosciences for suprachoroidal space microinjector designed to optimize ocular oncology drug delivery. https://ir.clearsidebio.com/news-releases/news-release-details/clearside-biomedical-announces-license-agreement-aura. Accessed 23 Sept 2019

  35. Morales-Canton V, Fromow-Guerra J, Longoria SS et al (2013) Suprachoroidal microinjection of bevacizumab is well tolerated in human patients. Invest Ophthalmol Vis Sci 54:3299

    Google Scholar 

  36. Einmahl S, Savoldelli M, D’Hermies F et al (2002) Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye. Invest Ophthalmol Vis Sci 43(5):1533–1539

    Google Scholar 

  37. Tyagi P, Barros M, Stansbury JW et al (2013) Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm 10(8):2858–2867. https://doi.org/10.1021/mp300716t

    Article  CAS  Google Scholar 

  38. Ding K, Shen J, Hafiz Z et al (2019) AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J Clin Invest 130:4901–4911. https://doi.org/10.1172/JCI129085

    Article  Google Scholar 

  39. Peden MC, Min J, Meyers C et al (2011) Ab-externo AAV-mediated gene delivery to the suprachoroidal space using a 250 micron flexible microcatheter. PLoS One 6(2):e17140. https://doi.org/10.1371/journal.pone.0017140

    Article  CAS  Google Scholar 

  40. de Smet MD, Lynch JL, Dejneka NS et al (2018) A subretinal cell delivery method via suprachoroidal access in minipigs: safety and surgical outcomes. Invest Ophthalmol Vis Sci 59:311–320

    Article  Google Scholar 

  41. Gyroscope Therapeutics (2019) Gyroscope Therapeutics merges with Orbit Biomedical creating a leading retinal gene therapy company. https://gyroscopetx.com/wp-content/uploads/2019/04/Gyroscope-and-Orbit-Merger-Final-11.4.19.pdf. Accessed 23 Sept 2019

  42. Olsen TW, Feng X, Wabner K et al (2011) Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci 52(7):4749–4756. https://doi.org/10.1167/iovs.10-6291

    Article  CAS  Google Scholar 

  43. Patel SR, Lin ASP, Edelhauser HF et al (2011) Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res 28:166–176

    Article  CAS  Google Scholar 

  44. Barakat M (2019) The hands-on technique for suprachoroidal injection. Retina Specialist. https://www.retina-specialist.com/article/the-handson-technique-for-suprachoroidal-injection. Accessed 27 Jan 2020

  45. Goldstein DA, Do D, Noronha G et al (2016) Suprachoroidal corticosteroid administration: a novel route for local treatment of noninfectious uveitis. Transl Vis Sci Technol 5:14

    Article  Google Scholar 

  46. Gamlin PD, Alexander JJ, Boye SL et al (2019) SubILM injection of AAV for gene delivery to the retina. Methods Mol Biol 1950:249–262. https://doi.org/10.1007/978-1-4939-9139-6_14

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana Scherbakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scherbakova, I., Ragi, S.D., Sharma, T. (2023). Ocular Injection Techniques for Retinitis Pigmentosa: Intravitreal, Subretinal, and Suprachoroidal. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_34

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics