Skip to main content

Prime Editing for the Installation and Correction of Mutations Causing Inherited Retinal Disease: A Brief Methodology

  • Protocol
  • First Online:
Retinitis Pigmentosa

Abstract

Inherited retinal diseases (IRDs) encompass a large heterogeneous group of rare blinding disorders whose etiology originates from mutations in the 280 genes identified to date. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems represent a promising avenue for the treatment of IRDs, as exemplified by FDA clinical trial approval of EDIT-101 (AGN-151587), which removes a deep intronic variant in the CEP290 gene that causes Leber congenital amaurosis (LCA) type 10. Prime editing is a novel double-strand break (DSB) independent CRISPR/Cas system which has the potential to correct all 12 possible transition and transversion mutations in addition to small deletions and insertions. Here, as a proof-of-concept study, we describe a methodology using prime editing for the in vitro installation and correction of the classical Pde6brd10 c.1678C > T (p.Arg560Cys) mutation which causes autosomal recessive retinitis pigmentosa (RP) in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Enoch J et al (2019) Evaluating whether sight is the most valued sense. JAMA Ophthalmol 137(11):1317–1320

    Article  Google Scholar 

  2. Vu HT et al (2005) Impact of unilateral and bilateral vision loss on quality of life. Br J Ophthalmol 89(3):360–363

    Article  CAS  Google Scholar 

  3. Maguire AM et al (2021) Clinical perspective: treating RPE65-associated retinal dystrophy. Mol Ther 29(2):442–463

    Article  CAS  Google Scholar 

  4. Tsai YT et al (2018) Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of autosomal dominant retinitis pigmentosa. Ophthalmology 125(9):1421–1430

    Article  Google Scholar 

  5. Christie KA et al (2020) Mutation-independent allele-specific editing by CRISPR-Cas9, a novel approach to treat autosomal dominant disease. Mol Ther 28(8):1846–1857

    Article  CAS  Google Scholar 

  6. Mussolino C et al (2011) AAV-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther 18(7):637–645

    Article  CAS  Google Scholar 

  7. Buck TM, Wijnholds J (2020) Recombinant adeno-associated viral vectors (rAAV)-vector elements in ocular gene therapy clinical trials and transgene expression and bioactivity assays. Int J Mol Sci 21(12)

    Google Scholar 

  8. Wu W et al (2021) Molecular and therapeutic strategies for retinitis pigmentosa: culture of human retinal explants for ex vivo assessment of AAV gene delivery, in methods in molecular biology, W. JM, editor. Humana Press, New York

    Google Scholar 

  9. Fry LE, McClements ME, MacLaren RE (2021) Analysis of pathogenic variants correctable with CRISPR base editing among patients with recessive inherited retinal degeneration. JAMA Ophthalmol 139(3):319–328

    Article  Google Scholar 

  10. Tornabene P et al (2019) Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci Transl Med 11(492)

    Google Scholar 

  11. Gasiunas G et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586

    Article  CAS  Google Scholar 

  12. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  13. Mao Z et al (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7(18):2902–2906

    Article  CAS  Google Scholar 

  14. Komor AC et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  Google Scholar 

  15. Anzalone AV et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  CAS  Google Scholar 

  16. Maeder ML et al (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25(2):229–233

    Article  CAS  Google Scholar 

  17. Single ascending dose study in participants with LCA10. Allergan 2020; Available from: Editas Medicine, Inc.

    Google Scholar 

  18. Gallego C, Goncalves M, Wijnholds J (2020) Novel therapeutic approaches for the treatment of retinal degenerative diseases: focus on CRISPR/Cas-based gene editing. Front Neurosci 14:838

    Article  Google Scholar 

  19. Vagni P et al (2019) Gene editing preserves visual functions in a mouse model of retinal degeneration. Front Neurosci 13:945

    Article  Google Scholar 

  20. Chow RD et al (2021) A web tool for the design of prime-editing guide RNAs. Nat Biomed Eng 5(2):190–194

    Article  CAS  Google Scholar 

  21. Hsu JY et al (2021) PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun 12(1):1034

    Article  CAS  Google Scholar 

  22. Clement K et al (2019) CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol 37(3):224–226

    Article  CAS  Google Scholar 

  23. Park J et al (2017) Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33(2):286–288

    Article  CAS  Google Scholar 

Download references

Acknowledgement

B.L.D.C. is a recipient of the Capes PhD scholarship. S.H.T. and Jonas Children's Vision Care is supported by the National Institute of Health 5P30CA013696, U01 EY030580, U54OD020351, R24EY028758, R24EY027285, 5P30EY019007, R01EY018213, R01EY024698, R01EY026682, R21AG050437, the Schneeweiss Stem Cell Fund, New York State [SDHDOH01-C32590GG-3450000], the Foundation Fighting Blindness New York Regional Research Center Grant [TA-NMT-0116-0692-COLU], Nancy & Kobi Karp, the Crowley Family Funds, The Rosenbaum Family Foundation, Alcon Research Institute, the Gebroe Family Foundation, the Research to Prevent Blindness (RPB) Physician-Scientist Award, unrestricted funds from RPB, New York, NY, USA. P.M.J.Q. is the current recipient of a Curing Retinal Blindness Foundation (CRBF) grant, a Knights Templar Eye Foundation (KTEF) Career Starter grant, the International Retinal Research Foundation (IRRF) Loris and David Rich Postdoctoral Scholar Award and a New York Stem Cell Foundation (NYSCF)—Druckenmiller Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. J. Quinn .

Editor information

Editors and Affiliations

Ethics declarations

Stephen H. Tsang receives financial support from Abeona Therapeutics, Inc and Emendo. He is also the founder of Rejuvitas and is on the scientific and clinical advisory board for Nanoscope Therapeutics. Peter M.J. Quinn receives research support from Rejuvitas, Inc.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tsai, YT. et al. (2023). Prime Editing for the Installation and Correction of Mutations Causing Inherited Retinal Disease: A Brief Methodology. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics