Skip to main content

Electroretinogram (ERG) to Evaluate the Retina in Cases of Retinitis Pigmentosa (RP)

  • Protocol
  • First Online:
Retinitis Pigmentosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2560))

Abstract

Electroretinogram (ERG) captures the electrical responses of photoreceptors, the summation of action potentials from all neurons in the retina elicited by illumination. ERG testing is an incredibly useful tool in obtaining more specific information regarding a retinal dystrophy. Specifically, ERGs are typically used to test photoreceptors and inner retinal function in humans and animals, to diagnose retinal dystrophies, and to monitor disease progression. In this chapter, we will introduce the components of ERGs and the standard ERG protocols for clinical examination. We will also introduce the various specialized ERG tests, which can help to differentiate retinitis pigmentosa (RP) from other retinal disorders. Lastly, we will elaborate on how to use ERGs to predict visual prognosis in RP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dewar J (1877) The physiological action of Light1. Nature 15(385):433–435

    Article  Google Scholar 

  2. Kahn RH, Löwenstein A (1924) Das Elektroretinogramm. Albrecht von Graefes Archiv für Ophthalmologie 114(2):304–331

    Article  Google Scholar 

  3. de-Rouck AF (2006) History of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridges, pp 3–10

    Google Scholar 

  4. Riggs LA (1941) Continuous and reproducible records of the electrical activity of the human retina. Proc Soc Exp Biol Med 48(1):204–207

    Article  Google Scholar 

  5. Frishman LJ, Wang MH (2011) Electroretinogram of human, monkey and mouse. In: Levin LA et al (eds) Adler’s physiology of the eye. Elsevier Health Sciences, pp 480–501

    Chapter  Google Scholar 

  6. Perlman I (2007) The electroretinogram: ERG. In: Kolb H, Fernandez E, Nelson R (eds) Webvision: the organization of the retina and visual system [Internet]. University of Utah Health Sciences Center, pp 1323–1364

    Google Scholar 

  7. Frishman LJ (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridges, pp 139–184

    Google Scholar 

  8. Falk G, Shiells R (2006) Synaptic transmission: sensitivity control mechanisms. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridges, pp 79–92

    Google Scholar 

  9. Gurevich L, Slaughter MM (1993) Comparison of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Vis Res 33(17):2431–2435

    Article  CAS  Google Scholar 

  10. Miller RF, Dowling JE (1970) Intracellular responses of the Muller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol 33(3):323–341

    Article  CAS  Google Scholar 

  11. Newman EA, Odette LL (1984) Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol 51(1):164–182

    Article  CAS  Google Scholar 

  12. Stockton RA, Slaughter MM (1989) B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol 93(1):101–122

    Article  CAS  Google Scholar 

  13. Coupland SG (2006) Electrodes for visual testing. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridges, pp 245–254

    Google Scholar 

  14. Burian HM, Allen L (1954) A speculum contact lens electrode for electroretinography. Electroencephalogr Clin Neurophysiol 6(3):509–511

    Article  CAS  Google Scholar 

  15. McCulloch DL et al (2015) ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12

    Article  Google Scholar 

  16. Lam BL (2005) Electrophysiology of vision: clinical testing and applications. CRC Press

    Book  Google Scholar 

  17. Lawwill T, Burian HM (1966) A modification of the Burian-Allen contact-lens electrode for human electroretinography. Am J Ophthalmol 61(6):1506–1509

    Article  CAS  Google Scholar 

  18. Robson AG et al (2018) ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol 136(1):1–26

    Article  Google Scholar 

  19. Marmor MF et al (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77

    Article  CAS  Google Scholar 

  20. Berson EL (1981) Retinitis pigmentosa and allied diseases: applications of electroretinographic testing. Int Ophthalmol 4(1–2):7–22

    Article  CAS  Google Scholar 

  21. Falk G (1988) Signal transmission from rods to bipolar and horizontal cells: a synthesis. Prog Retin Res 8:255–279

    Article  Google Scholar 

  22. Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17(4):485–521

    Article  CAS  Google Scholar 

  23. Wang NK et al (2012) Multimodal fundus imaging in fundus albipunctatus with RDH5 mutation: a newly identified compound heterozygous mutation and review of the literature. Doc Ophthalmol 125(1):51–62

    Article  Google Scholar 

  24. Wang NK et al (2009) Cellular origin of fundus autofluorescence in patients and mice with a defective NR2E3 gene. Br J Ophthalmol 93(9):1234–1240

    Article  Google Scholar 

  25. Perlman I et al (2019) ISCEV extended protocol for the S-cone ERG. Doc Ophthalmol 140:95–101

    Article  Google Scholar 

  26. Berson EL (1993) Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 34(5):1659–1676

    CAS  Google Scholar 

  27. Berson EL (2007) Long-term visual prognoses in patients with retinitis pigmentosa: the Ludwig von Sallmann lecture. Exp Eye Res 85(1):7–14

    Article  CAS  Google Scholar 

  28. Nusinowitz S, Heckenlively JR (2006) Evaluating retinal function in the mouse retina with the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridges, pp 899–910

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, WC., Liu, PK., Wang, NK. (2023). Electroretinogram (ERG) to Evaluate the Retina in Cases of Retinitis Pigmentosa (RP). In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics