Skip to main content

Live Imaging of Golgi Outposts in Drosophila Dendritic Arbors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))


Neurons are polarized cells whose polarity and morphology rely on the robust localization of cellular organelles and cargo to axons or dendrites. Developing neurons require an active secretory pathway, which includes the endoplasmic reticulum and Golgi apparatus, to supply membrane and proteins to growing dendrites and axons. In some neurons, a subset of the Golgi called Golgi “outposts” localize to dendrites and contribute to local secretory networks. The movement and positioning of Golgi outposts have been correlated with dendrite branch growth and stabilization as the dendritic arbor is established. Live imaging is essential to capture the dynamic nature of these organelles. Here we outline a protocol to image and quantify Golgi outposts in peripheral sensory neurons in live, intact Drosophila larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Hanus C, Ehlers MD (2008) Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic 9:1437–1445.

    Article  CAS  Google Scholar 

  2. Horton AC, Rácz B, Monson EE et al (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48:757–771.

    Article  CAS  Google Scholar 

  3. Ye B, Zhang Y, Song W et al (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130:717–729.

    Article  CAS  Google Scholar 

  4. Ori-McKenney KM, Jan LY, Jan Y-N (2012) Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76:921–930.

    Article  CAS  Google Scholar 

  5. Yalgin C, Ebrahimi S, Delandre C et al (2015) Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat Neurosci 18:1437–1445.

    Article  CAS  Google Scholar 

  6. Yang SZ, Wildonger J (2020) Golgi outposts locally regulate microtubule orientation in neurons but are not required for the overall polarity of the dendritic cytoskeleton. Genetics 215:genetics.302979.2019.

    Article  CAS  Google Scholar 

  7. Mukherjee A, Brooks PS, Bernard F et al (2020) Microtubules originate asymmetrically at the somatic Golgi and are guided via Kinesin2 to maintain polarity in neurons. elife 9:e58943.

    Article  CAS  Google Scholar 

  8. Zhou W, Chang J, Wang X et al (2014) GM130 is required for compartmental organization of dendritic Golgi outposts. Curr Biol 24:1227–1233.

    Article  CAS  Google Scholar 

  9. Zheng Y, Wildonger J, Ye B et al (2008) Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10:1172–1180.

    Article  CAS  Google Scholar 

  10. Kelliher MT, Yue Y, Ng A et al (2018) Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts. J Cell Biol 217:2531–2547.

    Article  CAS  Google Scholar 

  11. Lin C-H, Li H, Lee Y-N et al (2015) Lrrk regulates the dynamic profile of dendritic Golgi outposts through the golgin Lava lamp. J Cell Biol 210:471–483.

    Article  CAS  Google Scholar 

  12. Grueber WB, Jan LY, Jan YN (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Dev Camb Engl 129:2867–2878

    CAS  Google Scholar 

  13. Han C, Jan LY, Jan Y-N (2011) Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron–glia interactions in Drosophila. Proc Natl Acad Sci 108:9673–9678.

    Article  Google Scholar 

  14. Jenkins BV, Saunders HAJ, Record HL et al (2017) Effects of mutating α-tubulin lysine 40 on sensory dendrite development. J Cell Sci 130:4120–4131.

    Article  CAS  Google Scholar 

  15. Snapp EL, Iida T, Frescas D et al (2004) The Fusome mediates intercellular endoplasmic reticulum connectivity in Drosophila ovarian cysts. Mol Biol Cell 15:4512–4521.

    Article  CAS  Google Scholar 

Download references


This work was supported by NIH R01 NS102385. We thank previous members of the Wildonger lab, especially Ashley Arthur, Sihui Yang, and Michael Kelliher, for their work optimizing the live imaging and the quantification of Golgi outposts in the class IV ddaC neurons.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jill Wildonger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mitchell, J.W., Wildonger, J. (2023). Live Imaging of Golgi Outposts in Drosophila Dendritic Arbors. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics