Skip to main content

Detection and Analysis of Microtubule Nucleator γ-Tubulin Ring Complex

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

Abstract

Golgi-derived microtubules constitute an asymmetrical microtubule network that drives polarized transport of vesicles to support cell polarization and directional migration. Golgi-based microtubule nucleation requires the γ-tubulin ring complex (γTuRC), the principal microtubule nucleator in animal cells. In this chapter, we present methods for detecting γTuRC components and associated proteins on the Golgi, examining Golgi-based microtubule nucleation, and measuring the microtubule-nucleating activity of isolated γTuRCs. These approaches have been demonstrated to be effective for assessing the microtubule-organizing function of the Golgi complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chabin-Brion K, Marceiller J, Perez F et al (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12:2047–2060

    Article  CAS  Google Scholar 

  2. Efimov A, Kharitonov A, Efimova N et al (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930

    Article  CAS  Google Scholar 

  3. Miller PM, Folkmann AW, Maia ARR et al (2009) Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11:1069–1080

    Article  CAS  Google Scholar 

  4. Moritz M, Braunfeld MB, Sedat JW et al (1995) Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378:638–640

    Article  CAS  Google Scholar 

  5. Zheng Y, Wong ML, Alberts B et al (1995) Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378:578–583

    Article  CAS  Google Scholar 

  6. Moritz M, Braunfeld MB, Guénebaut V et al (2000) Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol 2:365–370

    Article  CAS  Google Scholar 

  7. Kollman JM, Merdes A, Mourey L et al (2011) Microtubule nucleation by γ-tubulin complexes. Nat Rev Mol Cell Biol 12:709–721

    Article  CAS  Google Scholar 

  8. Wieczorek M, Urnavicius L, Ti S-C et al (2020) Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell 180:165–175.e16

    Article  CAS  Google Scholar 

  9. Liu P, Zupa E, Neuner A et al (2020) Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature 578:467–471

    Article  CAS  Google Scholar 

  10. Consolati T, Locke J, Roostalu J et al (2020) Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev Cell 53:603–617.e8

    Article  CAS  Google Scholar 

  11. Moudjou M, Bordes N, Paintrand M et al (1996) gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J Cell Sci 109(Pt 4):875–887

    Article  CAS  Google Scholar 

  12. Choi Y-K, Liu P, Sze SK et al (2010) CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J Cell Biol 191:1089–1095

    Article  CAS  Google Scholar 

  13. Ríos RM, Sanchís A, Tassin AM et al (2004) GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335

    Article  Google Scholar 

  14. Rivero S, Cardenas J, Bornens M et al (2009) Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28:1016–1028

    Article  CAS  Google Scholar 

  15. Wang Z, Zhang C, Qi RZ (2014) A newly identified myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport. J Cell Sci 127:4904–4917

    Google Scholar 

  16. Wu J, de Heus C, Liu Q et al (2016) Molecular pathway of microtubule organization at the Golgi apparatus. Dev Cell 39:44–60

    Article  CAS  Google Scholar 

  17. Wang Z, Wu T, Shi L et al (2010) Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem 285:22658–22665

    Article  CAS  Google Scholar 

  18. Fong K-W, Choi Y-K, Rattner JB et al (2008) CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-Tubulin ring complex. Mol Biol Cell 19:115–125

    Article  CAS  Google Scholar 

  19. Shen Y, Liu P, Jiang T et al (2017) The catalytic subunit of DNA polymerase δ inhibits γTuRC activity and regulates Golgi-derived microtubules. Nat Commun 8:554

    Article  Google Scholar 

  20. Jiang K, Hua S, Mohan R et al (2014) Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev Cell 28:295–309

    Article  CAS  Google Scholar 

  21. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  22. Gell C, Friel CT, Borgonovo B et al (2011) Purification of tubulin from porcine brain. Methods Mol Biol 777:15–28

    Article  CAS  Google Scholar 

  23. Choi Y-K, Qi RZ (2014) Assaying microtubule nucleation by the γ-tubulin ring complex. Methods Enzymol 540:119–130

    Article  CAS  Google Scholar 

  24. Lancey C, Tehseen M, Raducanu V-S et al (2020) Structure of the processive human Pol δ holoenzyme. Nat Commun 11:1109

    Article  CAS  Google Scholar 

  25. Grimaldi AD, Fomicheva M, Kaverina I (2013) Ice recovery assay for detection of Golgi-derived microtubules. Methods Cell Biol 118:401–415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Research Grants Council (General Research Fund and Theme-Based Research Scheme T13-605/18-W) and the Innovation and Technology Commission (ITCPD/17-9) of Hong Kong. F.K.C.A. was supported by the Postdoctoral Fellowship Scheme (PDFS2021-6S03) of the Research Grants Council of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Z. Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Au, F.K.C., Le, K.T.D., Qi, R.Z. (2023). Detection and Analysis of Microtubule Nucleator γ-Tubulin Ring Complex. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics