Skip to main content

Rapid COG Depletion in Mammalian Cell by Auxin-Inducible Degradation System

  • Protocol
  • First Online:
Golgi

Abstract

Conserved oligomeric Golgi (COG) complex orchestrates intra-Golgi retrograde trafficking and glycosylation of macromolecules, but the detailed mechanism of COG action is unknown. Previous studies employed prolonged protein knockout and knockdown approaches which may potentially generate off-target and indirect mutant phenotypes. To achieve a fast depletion of COG subunits in human cells, the auxin-inducible degradation system was employed. This method of protein regulation allows a very fast and efficient depletion of COG subunits, which provides the ability to accumulate COG complex dependent (CCD) vesicles and investigate initial cellular defects associated with the acute depletion of COG complex subunits. This protocol is applicable to other vesicle tethering complexes and can be utilized to investigate anterograde and retrograde intracellular membrane trafficking pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson CL (2009) Mechanisms of transport through the Golgi complex. J Cell Sci 122:443–452. https://doi.org/10.1242/jcs.032581

    Article  CAS  Google Scholar 

  2. Willett R, Ungar D, Lupashin V (2013) The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140:271–283. https://doi.org/10.1007/s00418-013-1117-6

    Article  CAS  Google Scholar 

  3. Huang S, Wang Y (2017) Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Res 6:2050. https://doi.org/10.12688/f1000research.11900.1

    Article  CAS  Google Scholar 

  4. Makhoul C, Gosavi P, Gleeson PA (2019) Golgi dynamics: the morphology of the mammalian Golgi apparatus in health and disease. Front Cell Dev Biol 7. https://doi.org/10.3389/fcell.2019.00112

  5. D’Souza Z, Taher FS, Lupashin VV (1864) Golgi inCOGnito: from vesicle tethering to human disease. Biochim Biophys Acta Gen Subj 2020:129694. https://doi.org/10.1016/j.bbagen.2020.129694

    Article  CAS  Google Scholar 

  6. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166. https://doi.org/10.1016/s0092-8674(03)01079-1

    Article  CAS  Google Scholar 

  7. Mc D, Pa G (2007) New insights into membrane trafficking and protein sorting. Int Rev Cytol 261:47–116. https://doi.org/10.1016/s0074-7696(07)61002-x

    Article  Google Scholar 

  8. Pokrovskaya I, Willett R, Smith R et al (2011) COG complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21:1554–1569. https://doi.org/10.1093/glycob/cwr028

    Article  CAS  Google Scholar 

  9. Blackburn JB, D’Souza Z, Lupashin VV (2019) Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett 593:2466–2487. https://doi.org/10.1002/1873-3468.13570

    Article  CAS  Google Scholar 

  10. Ungar D, Oka T, Krieger M, Hughson FM (2006) Retrograde transport on the COG railway. Trends Cell Biol 16:113–120. https://doi.org/10.1016/j.tcb.2005.12.004

    Article  CAS  Google Scholar 

  11. Bröcker C, Engelbrecht-Vandré S, Ungermann C (2010) Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 20:R943–R952. https://doi.org/10.1016/j.cub.2010.09.015

    Article  CAS  Google Scholar 

  12. Blackburn JB, Lupashin VV (2016) Creating knockouts of conserved oligomeric Golgi complex subunits using CRISPR-mediated gene editing paired with a selection strategy based on glycosylation defects associated with impaired COG complex function. Methods Mol Biol 1496:145–161. https://doi.org/10.1007/978-1-4939-6463-5_12

    Article  CAS  Google Scholar 

  13. Whyte JRC, Munro S (2001) The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1:527–537. https://doi.org/10.1016/S1534-5807(01)00063-6

    Article  CAS  Google Scholar 

  14. Ungar D, Oka T, Brittle EE et al (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157:405–415. https://doi.org/10.1083/jcb.200202016

    Article  CAS  Google Scholar 

  15. Fotso P, Koryakina Y, Pavliv O et al (2005) Cog1p plays a central role in the organization of the yeast conserved oligomeric golgi complex*. J Biol Chem 280:27613–27623. https://doi.org/10.1074/jbc.M504597200

    Article  CAS  Google Scholar 

  16. Bailey Blackburn J, Pokrovskaya I, Fisher P et al (2016) COG complex complexities: detailed characterization of a complete set of HEK293T cells lacking individual COG subunits. Front Cell Dev Biol 4:23. https://doi.org/10.3389/fcell.2016.00023

    Article  Google Scholar 

  17. Suvorova ES, Duden R, Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157:631–643. https://doi.org/10.1083/jcb.200111081

    Article  CAS  Google Scholar 

  18. Shestakova A, Zolov S, Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7:191–204. https://doi.org/10.1111/j.1600-0854.2005.00376.x

    Article  CAS  Google Scholar 

  19. Laufman O, Hong W, Lev S (2013) The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic SNARE complexes assembly. J Cell Sci 126(6):1506–1516. https://doi.org/10.1242/jcs.122101

    Article  CAS  Google Scholar 

  20. D’Souza Z, Blackburn JB, Kudlyk T et al (2019) Defects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cells. Front Cell Dev Biol 7:118. https://doi.org/10.3389/fcell.2019.00118

    Article  Google Scholar 

  21. Ondruskova N, Cechova A, Hansikova H et al (1865) Congenital disorders of glycosylation: still “hot” in 2020. Biochim Biophys Acta Gen Subj 2021:129751. https://doi.org/10.1016/j.bbagen.2020.129751

    Article  CAS  Google Scholar 

  22. Sumya FT, Pokrovskaya ID, Lupashin V (2021) Development and initial characterization of cellular models for COG complex-related CDG-II diseases. Front Genet 12:733048. https://doi.org/10.3389/fgene.2021.733048

    Article  CAS  Google Scholar 

  23. Housden BE, Muhar M, Gemberling M et al (2017) Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 18:24–40. https://doi.org/10.1038/nrg.2016.118

    Article  CAS  Google Scholar 

  24. Divekar NS, Horton HE, Wignall SM (2021) Methods for rapid protein depletion in C. elegans using auxin-inducible degradation. Curr Protoc 1:e16. https://doi.org/10.1002/cpz1.16

    Article  CAS  Google Scholar 

  25. Robinson MS, Sahlender DA, Foster SD (2010) Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev Cell 18:324–331. https://doi.org/10.1016/j.devcel.2009.12.015

    Article  CAS  Google Scholar 

  26. Zolov SN, Lupashin VV (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168:747–759. https://doi.org/10.1083/jcb.200412003

    Article  CAS  Google Scholar 

  27. Zhang Y, Seemann J (2021) Rapid degradation of GRASP55 and GRASP65 reveals their immediate impact on the Golgi structure. J Cell Biol 220:e202007052. https://doi.org/10.1083/jcb.202007052

    Article  CAS  Google Scholar 

  28. Camlin NJ, Evans JP (2019) Auxin-inducible protein degradation as a novel approach for protein depletion and reverse genetic discoveries in mammalian oocytes†. Biol Reprod 101:704–718. https://doi.org/10.1093/biolre/ioz113

    Article  Google Scholar 

  29. Banaszynski LA, Chen L, Maynard-Smith LA et al (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126:995–1004. https://doi.org/10.1016/j.cell.2006.07.025

    Article  CAS  Google Scholar 

  30. Iwamoto M, Björklund T, Lundberg C et al (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17:981–988. https://doi.org/10.1016/j.chembiol.2010.07.009

    Article  CAS  Google Scholar 

  31. Lambrus BG, Moyer TC, Holland AJ (2018) Chapter 5 – Applying the auxin-inducible degradation system for rapid protein depletion in mammalian cells. In: Maiato H, Schuh M (eds) Methods in cell biology. Academic Press, pp 107–135

    Google Scholar 

  32. Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9:302–308. https://doi.org/10.1016/j.tplants.2004.04.003

    Article  CAS  Google Scholar 

  33. Nishimura K, Fukagawa T, Takisawa H et al (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6:917–922. https://doi.org/10.1038/nmeth.1401

    Article  CAS  Google Scholar 

  34. Holland AJ, Fachinetti D, Han JS, Cleveland DW (2012) Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc Natl Acad Sci U S A 109:E3350–E3357. https://doi.org/10.1073/pnas.1216880109

    Article  Google Scholar 

  35. Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT (2016) Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep 15:210–218. https://doi.org/10.1016/j.celrep.2016.03.001

    Article  CAS  Google Scholar 

  36. Stewart SA, Dykxhoorn DM, Palliser D et al (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501. https://doi.org/10.1261/rna.2192803

    Article  CAS  Google Scholar 

  37. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471. https://doi.org/10.1128/JVI.72.11.8463-8471.1998

    Article  CAS  Google Scholar 

  38. Nakano R, Ihara N, Morikawa S et al (2019) Auxin-mediated rapid degradation of target proteins in hippocampal neurons. Neuroreport 30:908–913. https://doi.org/10.1097/WNR.0000000000001299

    Article  CAS  Google Scholar 

  39. Wright PF, Nilsson E, Van Rooij EM et al (1993) Standardisation and validation of enzyme-linked immunosorbent assay techniques for the detection of antibody in infectious disease diagnosis. Rev Sci Tech 12:435–450. https://doi.org/10.20506/rst.12.2.691

    Article  CAS  Google Scholar 

  40. Sedgwick P (2012) Pearson’s correlation coefficient. BMJ 345:e4483–e4483. https://doi.org/10.1136/bmj.e4483

    Article  Google Scholar 

  41. Yesbolatova A, Natsume T, Hayashi K-I, Kanemaki MT (2019) Generation of conditional auxin-inducible degron (AID) cells and tight control of degron-fused proteins using the degradation inhibitor auxinole. Methods 164–165:73–80. https://doi.org/10.1016/j.ymeth.2019.04.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health grant R01GM083144.

Author Contributions

FS wrote the manuscript. IP edited the manuscript. VL supervised and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V Lupashin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sumya, F.T., Pokrovskaya, I.D., Lupashin, V.V. (2023). Rapid COG Depletion in Mammalian Cell by Auxin-Inducible Degradation System. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics