Skip to main content

Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections

  • Protocol
  • First Online:
Glycovirology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2556))

Abstract

Ongoing seasonal HCoV-OC43 and HCoV-HKU1 (common cold), an ongoing zoonotic infection of highly lethal MERS-CoV in humans (MERS disease), and an ongoing pandemic SARS-CoV-2 (COVID-19) with high mutability giving some variants causing severe illness and death have been reported to attach to sialyl receptors via their spike (S) glycoproteins and via additional short spikes, hemagglutinin-esterase (HE) glycoproteins, for HCoV-OC43 and HCoV-HKU1. There is lack of zoonotic viruses that are origins of HCoV-HKU1 and the first recorded pandemic CoV (SARS-CoV-2) for studies. In this chapter, we review current knowledge of the roles of sialyl glycans in infections with these viruses in distinct infection stages. Determination of the similarities and differences in roles of sialyl glycans in infections with these viruses could lead to a better understanding of the pathogenesis and transmission that is essential for combating infections with CoVs that recognize sialyl glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICTV (2020) Virus taxonomy: 2020 release. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/222/coronaviridae

  2. Corman VM, Baldwin HJ, Tateno AF et al (2015) Evidence for an ancestral association of human coronavirus 229E with bats. J Virol 89:11858–11870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tao Y, Shi M, Chommanard C et al (2017) Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 91:e01953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lau SK, Woo PC, Li KS et al (2015) Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. J Virol 89:3076–3092

    Article  CAS  PubMed  Google Scholar 

  5. Sriwilaijaroen N, Suzuki Y (2020) Host receptors of influenza viruses and coronaviruses-molecular mechanisms of recognition, Vaccines (Basel), p 8, 587

    Google Scholar 

  6. Decaro N, Lorusso A (2020) Novel human coronavirus (SARS-CoV-2): a lesson from animal coronaviruses. Vet Microbiol 244:108693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mittal A, Manjunath K, Ranjan RK et al (2020) COVID-19 pandemic: insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog 16:e1008762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hulswit RJG, Lang Y, Bakkers MJG et al (2019) Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci U S A 116:2681–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu DX, Liang JQ, Fung TS (2021) Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, pp 428–440

    Chapter  Google Scholar 

  10. Sun W, Liao JP, Yu KY et al (2021) A severe case of human coronavirus 229E pneumonia in an elderly man with diabetes mellitus: a case report. BMC Infect Dis 21:524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Li X, Liu W et al (2020) Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerg Microbes Infect 9:246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woo PC, Lau SK, Tsoi HW et al (2005) Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J Infect Dis 192:1898–1907

    Article  CAS  PubMed  Google Scholar 

  13. Kawataki M, Ito A, Ishida T (2021) Pneumonia due to human coronavirus OC43 in an immunocompetent adult detected by multiplex polymerase chain reaction. Intern Med 60:3497–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morgello S (2020) Coronaviruses and the central nervous system. J Neurovirol 26:459–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Coupanec A, Desforges M, Kaufer B et al (2021) Potential differences in cleavage of the S protein and type-1 interferon together control human coronavirus infection, propagation, and neuropathology within the central nervous system. J Virol 95:e00140

    Article  PubMed Central  Google Scholar 

  16. FAO (2021) MERS-CoV situation update. https://www.fao.org/ag/againfo/programmes/en/empres/mers/situation_update.html#2

  17. Gu J, Korteweg C (2007) Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 170:1136–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Wit E, Rasmussen AL, Falzarano D et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A 110:16598–16603

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gandhi RT, Lynch JB, Del Rio C (2020) Mild or moderate COVID-19. N Engl J Med 383:1757–1766

    Article  CAS  PubMed  Google Scholar 

  20. Wolfel R, Corman VM, Guggemos W et al (2020) Virological assessment of hospitalized patients with COVID-2019. Nature 581:465–469

    Article  PubMed  Google Scholar 

  21. Kozlov M (2022) Omicron’s feeble attack on the lungs could make it less dangerous. Nature 601:177

    Article  CAS  PubMed  Google Scholar 

  22. WHO (2022) WHO coronavirus (COVID-19) dashboard. https://covid19.who.int/

  23. Arthur R (2020) US starts COVID-19 vaccinations. https://www.biopharma-reporter.com/Article/2020/12/14/US-starts-COVID-19-vaccinations-after-Pfizer-vaccine-authorized

  24. van Riel D, de Wit E (2020) Next-generation vaccine platforms for COVID-19. Nat Mater 19:810–812

    Article  PubMed  Google Scholar 

  25. Craven J (2022) COVID-19 vaccine tracker. https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker

  26. Times TNY (2022) Tracking coronavirus vaccinations around the world. https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html

  27. NIH (2022) The COVID-19 treatment guidelines panel’s statement on therapies for high-risk, nonhospitalized patients with mild to moderate COVID-19. https://www.covid19treatmentguidelines.nih.gov/therapies/statement-on-therapies-for-high-risk-nonhospitalized-patients/

  28. Wang Y, Li P, Solanki K et al (2021) Viral polymerase binding and broad-spectrum antiviral activity of molnupiravir against human seasonal coronaviruses. Virology 564:33–38

    Article  CAS  PubMed  Google Scholar 

  29. Owen DR, Allerton CMN, Anderson AS et al (2021) An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science 374:1586–1593

    Article  CAS  PubMed  Google Scholar 

  30. Wahl A, Gralinski LE, Johnson CE et al (2021) SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature 591:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tortorici MA, Walls AC, Lang Y et al (2019) Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 26:481–489

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park YJ, Walls AC, Wang Z et al (2019) Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat Struct Mol Biol 26:1151–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baker AN, Richards SJ, Guy CS et al (2020) The SARS-COV-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Cent Sci 6:2046–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nguyen L, McCord KA, Bui DT et al (2022) Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat Chem Biol 18:81–90

    Article  CAS  PubMed  Google Scholar 

  35. Bakkers MJ, Lang Y, Feitsma LJ et al (2017) Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity. Cell Host Microbe 21:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sriwilaijaroen N, Suzuki Y (2020) Sialoglycovirology of lectins: sialyl glycan binding of enveloped and non-enveloped viruses. Methods Mol Biol 2132:483–545

    Article  CAS  PubMed  Google Scholar 

  37. Smits SL, Gerwig GJ, van Vliet AL et al (2005) Nidovirus sialate-O-acetylesterases: evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J Biol Chem 280:6933–6941

    Article  CAS  PubMed  Google Scholar 

  38. Desforges M, Desjardins J, Zhang C et al (2013) The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus. J Virol 87:3097–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vlasak R, Luytjes W, Spaan W et al (1988) Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci U S A 85:4526–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang X, Dong W, Milewska A et al (2015) Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J Virol 89:7202–7213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kirchdoerfer RN, Cottrell CA, Wang N et al (2016) Pre-fusion structure of a human coronavirus spike protein. Nature 531:118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saif LJ (2010) Bovine respiratory coronavirus. Vet Clin North Am Food Anim Pract 26:349–364

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kozak RP, Royle L, Gardner RA et al (2012) Suppression of peeling during the release of O-glycans by hydrazinolysis. Anal Biochem 423:119–128

    Article  CAS  PubMed  Google Scholar 

  44. Sriwilaijaroen N, Nakakita SI, Kondo S et al (2018) N-glycan structures of human alveoli provide insight into influenza A virus infection and pathogenesis. FEBS J 285:1611–1634

    Article  CAS  PubMed  Google Scholar 

  45. Shirato K, Kawase M, Matsuyama S (2018) Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology 517:9–15

    Article  CAS  PubMed  Google Scholar 

  46. Dominguez SR, Travanty EA, Qian Z et al (2013) Human coronavirus HKU1 infection of primary human type II alveolar epithelial cells: cytopathic effects and innate immune response. PLoS One 8:e70129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okwan-Duodu D, Lim EC, You S et al (2021) TMPRSS2 activity may mediate sex differences in COVID-19 severity. Signal Transduct Target Ther 6:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xia S, Liu M, Wang C et al (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30:343–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saccon E, Chen X, Mikaeloff F et al (2021) Cell-type-resolved quantitative proteomics map of interferon response against SARS-CoV-2. iScience 24:102420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaki AM, van Boheemen S, Bestebroer TM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820

    Article  CAS  PubMed  Google Scholar 

  51. Lau SKP, Li KSM, Luk HKH et al (2020) Middle East respiratory syndrome coronavirus antibodies in Bactrian and hybrid camels from Dubai. mSphere:5

    Google Scholar 

  52. Reusken CB, Schilp C, Raj VS et al (2016) MERS-CoV infection of alpaca in a region where MERS-CoV is endemic. Emerg Infect Dis 22:1129–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. CDC (2019) Transmission. https://www.cdc.gov/coronavirus/mers/about/transmission.html

  54. Adney DR, Bielefeldt-Ohmann H, Hartwig AE et al (2016) Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas. Emerg Infect Dis 22:1031–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khalafalla AI, Lu X, Al-Mubarak AI et al (2015) MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014. Emerg Infect Dis 21:1153–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Corman VM, Albarrak AM, Omrani AS et al (2016) Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin Infect Dis 62:477–483

    CAS  PubMed  Google Scholar 

  57. Arabi YM, Balkhy HH, Hayden FG et al (2017) Middle East respiratory syndrome. N Engl J Med 376:584–594

    Article  PubMed  PubMed Central  Google Scholar 

  58. Raj VS, Mou H, Smits SL et al (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mou H, Raj VS, van Kuppeveld FJ et al (2013) The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol 87:9379–9383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang N, Shi X, Jiang L et al (2013) Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 23:986–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li W, Hulswit RJG, Widjaja I et al (2017) Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci U S A 114:E8508–E8517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Widagdo W, Okba NMA, Li W et al (2019) Species-specific colocalization of Middle East respiratory syndrome coronavirus attachment and entry receptors. J Virol 93:e00107–e00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Widagdo W, Okba NMA, Richard M et al (2019) Lack of Middle East respiratory syndrome coronavirus transmission in rabbits. Viruses 11:381

    Article  CAS  PubMed Central  Google Scholar 

  64. Vergara-Alert J, Raj VS, Munoz M et al (2017) Middle East respiratory syndrome coronavirus experimental transmission using a pig model. Transbound Emerg Dis 64:1342–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walther T, Karamanska R, Chan RW et al (2013) Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog 9:e1003223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Widagdo W, Raj VS, Schipper D et al (2016) Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels. J Virol 90:4838–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qing E, Hantak M, Perlman S et al (2020) Distinct roles for sialoside and protein receptors in coronavirus infection. mBio 11:e02764–e02719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sriwilaijaroen N, Suzuki Y (2020) Host receptors of influenza viruses and coronaviruses-molecular mechanisms of recognition. Vaccines (Basel) 8:587

    Article  CAS  Google Scholar 

  69. Tang T, Bidon M, Jaimes JA et al (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir Res 178:104792

    Article  CAS  PubMed  Google Scholar 

  70. Yan R, Zhang Y, Li Y et al (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Clausen TM, Sandoval DR, Spliid CB et al (2020) SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 183(1043–1057):e1015

    Google Scholar 

  72. Chu H, Hu B, Huang X et al (2021) Host and viral determinants for efficient SARS-CoV-2 infection of the human lung. Nat Commun 12:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kristic J, Lauc G (2017) Ubiquitous importance of protein glycosylation. Methods Mol Biol 1503:1–12

    Article  CAS  PubMed  Google Scholar 

  74. Essaidi-Laziosi M, Perez Rodriguez FJ, Hulo N et al (2021) Estimating clinical SARS-CoV-2 infectiousness in Vero E6 and primary airway epithelial cells. Lancet Microb 2:e571

    Article  CAS  Google Scholar 

  75. Ryzhikov AB, Onkhonova GS, Imatdinov IR et al (2021) Recombinant SARS-CoV-2 S protein binds to glycans of the lactosamine family in vitro. Biochemistry (Mosc) 86:243–247

    Article  CAS  Google Scholar 

  76. Wu SC, Arthur CM, Wang J et al (2021) The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A. Blood Adv 5:1305–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dhar C, Sasmal A, Diaz S et al (2021) Are sialic acids involved in COVID-19 pathogenesis? Glycobiology 31:1068–1071

    Article  CAS  PubMed  Google Scholar 

  78. Suzuki Y, Ito T, Suzuki T et al (2000) Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 74:11825–11831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xia B, Royall JA, Damera G et al (2005) Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. Glycobiology 15:747–775

    Google Scholar 

  80. Woodward H, Horsey B, Bhavanandan VP et al (1982) Isolation, purification, and properties of respiratory mucus glycoproteins. Biochemistry 21:694–701

    Article  CAS  PubMed  Google Scholar 

  81. Watanabe Y, Allen JD, Wrapp D et al (2020) Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369:330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sanda M, Morrison L, Goldman R (2021) N- and O-glycosylation of the SARS-CoV-2 spike protein. Anal Chem 93:2003–2009

    Article  CAS  PubMed  Google Scholar 

  83. Wegner MS, Gruber L, Mattjus P et al (2018) The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1). BMC Cancer 18:153

    Article  PubMed  PubMed Central  Google Scholar 

  84. Han YB, Chen LQ, Li Z et al (2017) Structural insights into the broad substrate specificity of a novel endoglycoceramidase I belonging to a new subfamily of GH5 glycosidases. J Biol Chem 292:4789–4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Puray-Chavez M, LaPak KM, Schrank TP et al (2021) Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Rep 36:109364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bussani R, Schneider E, Zentilin L et al (2020) Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine 61:103104

    Article  PubMed  PubMed Central  Google Scholar 

  87. Buchrieser J, Dufloo J, Hubert M et al (2020) Syncytia formation by SARS-CoV-2-infected cells. EMBO J 39:e106267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heurich A, Hofmann-Winkler H, Gierer S et al (2014) TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 88:1293–1307

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sanders DW, Jumper CC, Ackerman PJ et al (2021) SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. elife 10:e65962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–469

    Article  CAS  PubMed  Google Scholar 

  91. Kalra RS, Kandimalla R (2021) Engaging the spikes: heparan sulfate facilitates SARS-CoV-2 spike protein binding to ACE2 and potentiates viral infection. Signal Transduct Target Ther 6:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Danziger-Isakov L, Khalil N, Divanovic A et al (2021) Novel treatment of infant with COVID-19 with the sialidase fusion protein, DAS181. Pediatr Infect Dis J 40:e234–e235

    Article  PubMed  Google Scholar 

  93. Peacock TP, Goldhill DH, Zhou J et al (2021) The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol 6:899–909

    Article  CAS  PubMed  Google Scholar 

  94. Xia S, Lan Q, Su S et al (2020) The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct Target Ther 5:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baggen J, Vanstreels E, Jansen S et al (2021) Cellular host factors for SARS-CoV-2 infection. Nat Microbiol 6:1219–1232

    Article  CAS  PubMed  Google Scholar 

  96. Jaimes JA, Millet JK, Whittaker GR (2020) Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 23:101212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tang T, Jaimes JA, Bidon MK et al (2021) Proteolytic activation of SARS-CoV-2 spike at the S1/S2 boundary: potential role of proteases beyond furin. ACS Infect Dis 7:264–272

    Article  CAS  PubMed  Google Scholar 

  98. Malone B, Urakova N, Snijder EJ et al (2022) Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 23:21–39

    Article  CAS  PubMed  Google Scholar 

  99. Moustaqil M, Ollivier E, Chiu HP et al (2021) SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect 10:178–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Knoops K, Kikkert M, Worm SH et al (2008) SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6:e226

    Article  PubMed  PubMed Central  Google Scholar 

  101. Duart G, Garcia-Murria MJ, Grau B et al (2020) SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biol 10:200209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sicari D, Chatziioannou A, Koutsandreas T et al (2020) Role of the early secretory pathway in SARS-CoV-2 infection. J Cell Biol 219:e202006005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reis CA, Tauber R, Blanchard V (2021) Glycosylation is a key in SARS-CoV-2 infection. J Mol Med (Berl) 99:1023–1031

    Article  CAS  Google Scholar 

  104. Perrier A, Bonnin A, Desmarets L et al (2019) The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem 294:14406–14421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dey D, Singh S, Khan S et al (2022) An extended motif in the SARS-CoV-2 spike modulates binding and release of host coatomer in retrograde trafficking. bioRxiv. 2021.2009.2003.458953

    Google Scholar 

  106. Bracquemond D, Muriaux D (2021) Betacoronavirus assembly: clues and perspectives for elucidating SARS-CoV-2 particle formation and egress. MBio 12:e0237121

    Article  PubMed  Google Scholar 

  107. V’Kovski P, Kratzel A, Steiner S et al (2021) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19:155–170

    Article  PubMed  Google Scholar 

  108. Ghosh S, Dellibovi-Ragheb TA, Kerviel A et al (2020) β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 183(1520–1535):e1514

    Google Scholar 

  109. Mallet WG, Maxfield FR (1999) Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J Cell Biol 146:345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Martin S, Heslan C, Jegou G et al (2021) SARS-CoV-2 integral membrane proteins shape the serological responses of patients with COVID-19. iScience 24:103185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16:69

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rota PA, Oberste MS, Monroe SS et al (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399

    Article  CAS  PubMed  Google Scholar 

  113. Bosch BJ, van der Zee R, de Haan CA et al (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McBride CE, Li J, Machamer CE (2007) The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol 81:2418–2428

    Article  CAS  PubMed  Google Scholar 

  115. Cattin-Ortola J, Welch LG, Maslen SL et al (2021) Sequences in the cytoplasmic tail of SARS-CoV-2 spike facilitate expression at the cell surface and syncytia formation. Nat Commun 12:5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang C, Wang Y, Zhu Y et al (2021) Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat Commun 12:264

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yuan Y, Cao D, Zhang Y et al (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8:15092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Benton DJ, Wrobel AG, Roustan C et al (2021) The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2. Proc Natl Acad Sci U S A 118:e2020586118

    Article  Google Scholar 

  119. Oefner C, D’Arcy A, Mac Sweeney A et al (2003) High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1-[([2-[(5-iodopyridin-2-yl)amino]-ethyl]amino)-acetyl]-2-cyano-(S)-pyrrolidine. Acta Crystallogr D Biol Crystallogr 59:1206–1212

    Article  PubMed  Google Scholar 

  120. Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280.e1-e5

    Article  Google Scholar 

  121. Saso W, Yamasaki M, Nakakita SI et al (2022) Significant role of host sialylated glycans in the infection and spread of severe acute respiratory syndrome coronavirus 2. PLoS Pathog 18:e1010590

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sriwilaijaroen, N., Suzuki, Y. (2022). Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections. In: Suzuki, Y. (eds) Glycovirology. Methods in Molecular Biology, vol 2556. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2635-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2635-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2634-4

  • Online ISBN: 978-1-0716-2635-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics