Skip to main content

Evaluation of the Glycan-Binding and Esterase Activities of Hemagglutinin-Esterase-Fusion Glycoprotein from Influenza D Virus

  • Protocol
  • First Online:
Book cover Glycovirology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2556))

Abstract

Influenza D virus (IDV) is a new member of influenza virus that uses cattle as the primary reservoir and infects multiple agricultural animals. Similar to influenza C virus (ICV), IDV also has seven segments in its genome and has only one major surface glycoprotein, called the hemagglutinin-esterase-fusion (HEF) protein, for receptor-binding, receptor-destroying, and membrane fusion. HEF utilizes 9-O-acetylated sialic acids as its receptor and has both receptor binding and esterase activities, thus is a critical determinant of host tropism. Here, we summarize the methods to evaluate the glycan-binding and esterase activities of HEF in vitro. The glycan-bind property is monitored through glycan microarray, MDCK cell-binding assay, Hemagglutination assay, solid-phase lectin binding assay, and immunofluorescence of tissue sections, and its esterase property is analyzed via esterase enzymatic activity assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouvier NM, Palese P (2008) The biology of influenza viruses. Vaccine 26(Suppl 4):D49–D53

    Article  CAS  Google Scholar 

  2. Cohen M et al (2013) Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J 10:321

    Article  Google Scholar 

  3. Muraki Y, Hongo S (2010) The molecular virology and reverse genetics of influenza C virus. Jpn J Infect Dis 63(3):157–165

    Article  CAS  Google Scholar 

  4. Muchmore EA, Varki A (1987) Selective inactivation of influenza C esterase: a probe for detecting 9-O-acetylated sialic acids. Science 236(4806):1293–1295

    Article  CAS  Google Scholar 

  5. Hause BM et al (2013) Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses. PLoS Pathog 9(2):e1003176

    Article  CAS  Google Scholar 

  6. Hause BM et al (2014) Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. MBio 5(2):e00031–e00014

    Article  Google Scholar 

  7. Sheng Z et al (2014) Genomic and evolutionary characterization of a novel influenza-C-like virus from swine. Arch Virol 159(2):249–255

    Article  CAS  Google Scholar 

  8. Collin EA et al (2015) Cocirculation of two distinct genetic and antigenic lineages of proposed influenza D virus in cattle. J Virol 89(2):1036–1042

    Article  Google Scholar 

  9. Song H et al (2016) An open receptor-binding cavity of hemagglutinin-esterase-fusion glycoprotein from newly-identified influenza D virus: basis for its broad cell tropism. PLoS Pathog 12(1):e1005411

    Article  Google Scholar 

  10. Nemanichvili N et al (2021) Tissue microarrays to visualize influenza D attachment to host receptors in the respiratory tract of farm animals. Viruses 13(4):586

    Article  CAS  Google Scholar 

  11. Fusade-Boyer M et al (2020) Risk mapping of influenza D virus occurrence in ruminants and swine in Togo using a spatial multicriteria decision analysis approach. Viruses 12(2):128

    Article  Google Scholar 

  12. Bailey ES et al (2020) First sequence of influenza D virus identified in poultry farm bioaerosols in Sarawak, Malaysia. Trop Dis Travel Med Vaccines 6:5

    Article  Google Scholar 

  13. Chiapponi C et al (2019) Detection of a new genetic cluster of influenza D virus in Italian cattle. Viruses 11(12):1110

    Article  CAS  Google Scholar 

  14. Hayakawa J et al (2020) Genetic and antigenic characterization and retrospective surveillance of bovine influenza D viruses identified in Hokkaido, Japan from 2018 to 2020. Viruses 12(8):877

    Article  CAS  Google Scholar 

  15. Huang C et al (2021) Emergence of new phylogenetic lineage of influenza D virus with broad antigenicity in California, United States. Emerg Microbes Infect 10(1):739–742

    Article  CAS  Google Scholar 

  16. Kaplan BS et al (2021) Virus strain influenced the interspecies transmission of influenza D virus between calves and pigs. Transbound Emerg Dis 68(6):3396–3404

    Article  CAS  Google Scholar 

  17. Murakami S et al (2020) Influenza D virus of new phylogenetic lineage, Japan. Emerg Infect Dis 26(1):168–171

    Article  CAS  Google Scholar 

  18. Nissly RH et al (2020) Influenza C and D viral load in cattle correlates with bovine respiratory disease (BRD): emerging role of orthomyxoviruses in the pathogenesis of BRD. Virology 551:10–15

    Article  CAS  Google Scholar 

  19. Silveira S et al (2019) Serosurvey for influenza D virus exposure in cattle, United States, 2014–2015. Emerg Infect Dis 25(11):2074–2080

    Article  CAS  Google Scholar 

  20. Trombetta CM et al (2019) Influenza D virus: serological evidence in the Italian population from 2005 to 2017. Viruses 12(1):30

    Article  Google Scholar 

  21. Zhai SL et al (2017) Influenza D virus in animal species in Guangdong Province, Southern China. Emerg Infect Dis 23(8):1392–1396

    Article  CAS  Google Scholar 

  22. Smith DF et al (2010) Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol 480:417–444

    Article  CAS  Google Scholar 

  23. Padler-Karavani V et al (2012) Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays. J Biol Chem 287(27):22593–22608

    Article  CAS  Google Scholar 

  24. Killian M (2014) Hemagglutination assay for influenza virus. In: Spackman E (ed) Animal influenza virus. Springer, New York, pp 3–9

    Chapter  Google Scholar 

  25. Langereis MA et al (2012) The murine coronavirus hemagglutinin-esterase receptor-binding site: a major shift in ligand specificity through modest changes in architecture. PLoS Pathog 8(1):e1002492

    Article  CAS  Google Scholar 

  26. Klein A et al (1994) 9-O-acetylated sialic acids have widespread but selective expression: analysis using a chimeric dual-function probe derived from influenza C hemagglutinin-esterase. Proc Natl Acad Sci U S A 91(16):7782–7786

    Article  CAS  Google Scholar 

  27. Peng G et al (2011) Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proc Natl Acad Sci U S A 108(26):10696–10701

    Article  CAS  Google Scholar 

  28. Chandrasekaran A et al (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 26(1):107–113

    Article  CAS  Google Scholar 

  29. Wang M et al (2015) Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus. Nat Commun 6:5600

    Article  CAS  Google Scholar 

  30. Martin LT et al (2003) Recombinant influenza C hemagglutinin-esterase as a probe for sialic acid 9-O-acetylation. Methods Enzymol 363:489–498

    Article  CAS  Google Scholar 

  31. Holwerda M et al (2021) Establishment of a reverse genetic system from a bovine derived influenza D virus isolate. Viruses 13(3):502

    Article  CAS  Google Scholar 

  32. Herrler G et al (1988) Serine-71 of the glycoprotein Hef is located at the active-site of the acetylesterase of influenza-C virus. Arch Virol 102(3–4):269–274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Song, H., Gao, G.F. (2022). Evaluation of the Glycan-Binding and Esterase Activities of Hemagglutinin-Esterase-Fusion Glycoprotein from Influenza D Virus. In: Suzuki, Y. (eds) Glycovirology. Methods in Molecular Biology, vol 2556. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2635-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2635-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2634-4

  • Online ISBN: 978-1-0716-2635-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics