Abstract
Whole-genome duplications yield varied chromosomal pairing patterns, ranging from strictly bivalent to multivalent, resulting in disomic and polysomic inheritance modes. In the bivalent case, homeologous chromosomes form pairs, where in a multivalent pattern all copies are homologous and are therefore free to pair and recombine. As sufficient sequencing data is more readily available than high-quality cytological assessments of meiotic behavior or population genetic assessment of allelic segregation, especially for non-model organisms, bioinformatics approaches to infer origins and inheritance modes of polyploids using short-read sequencing data are attractive. Here we describe two such approaches, where the first is based on distributions of allelic read depth at heterozygous sites within an individual, as the expectations of such distributions are different for disomic and polysomic inheritance modes. The second approach is more laborious and based on a phylogenetic assessment of partially phased haplotypes of a polyploid in comparison to the closest diploid relatives. We discuss the sources of deviations from expected inheritance patterns, advantages and pitfalls of both methods, effects of mating types on the performance of the methods, and possible future developments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Stebbins GL Jr (1947) Types of polyploids; their classification and significance. Adv Genet 1:403–429
Li Z, McKibben MTW, Finch GS et al (2021) Patterns and processes of diploidization in land plants. Annu Rev Plant Biol 72:387–410
Soltis DE, Soltis PS, Rieseberg LH (1993) Molecular data and the dynamic nature of polyploidy. CRC Crit Rev Plant Sci 12:243–273
Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639
Muller HJ (1914) A new mode of segregation in Gregory’s tetraploid primulas. Am Nat 48:508–512
Little TM (1945) Gene segregation in autotetraploids. Bot Rev 11:60
Darlington CD (1929) Chromosome behaviour and structural hybridity in theTradescantiae. J Genet 21:207–286
Butruille DV, Boiteux LS (2000) Selection-mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency and subchromosomal localization of deleterious mutations. Proc Natl Acad Sci U S A 97(12):6608–6613
Eriksson JS, de Sousa F, Bertrand YJK et al (2018) Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evol Biol 18:9
Stift M, Berenos C, Kuperus P et al (2008) Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (yellow cress) microsatellite data. Genetics 179:2113–2123
Campoy JA, Sun H, Goel M et al (2020) Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Genome Biol 21:306
Sun H, Jiao W-B, Krause K et al (2021) Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. https://www.biorxiv.org/content/10.1101/2021.05.15.444292v1
Hollister JD, Arnold BJ, Svedin E et al (2012) Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 8:e1003093
Burns R, Mandáková T, Jagoda J et al (2020) Gradual evolution of allopolyploidy in Arabidopsis suecica. https://www.biorxiv.org/content/10.1101/2020.08.24.264432v1
Novikova PY, Tsuchimatsu T, Simon S et al (2017) Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica. Mol Biol Evol 34:957–968
Akama S, Shimizu-Inatsugi R, Shimizu KK et al (2014) Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis. Nucleic Acids Res 42:e46
Paape T, Briskine RV, Halstead-Nussloch G et al (2018) Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nat Commun 9:3909
Yant L, Hollister JD, Wright KM et al (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23:2151–2156
Monnahan P, Kolář F, Baduel P et al (2019) Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol 3:457–468
Meirmans PG, Van Tienderen PH (2013) The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity 110:131–137
Gaeta RT, Chris Pires J (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28
Zhang Z, Gou X, Xun H et al (2020) Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proc Natl Acad Sci U S A 117:14561–14571
Edger PP, McKain MR, Bird KA et al (2018) Subgenome assignment in allopolyploids: challenges and future directions. Curr Opin Plant Biol 42:76–80
Chester M, Gallagher JP, Symonds VV et al (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci U S A 109:1176–1181
Bertioli DJ, Jenkins J, Clevenger J et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877–884
Wu Y, Lin F, Zhou Y et al (2020) Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids. Natl Sci Rev 8(5):nwaa277
Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715
Sears ER (1958) Intergenomic chromosome relationships in hexaploid wheat. Proc Int Congr Genet 2:258–259
Sears ER (1977) Genetics society of Canada award of excellence lecture an induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593
Jenczewski E, Eber F, Grimaud A et al (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653
Henry IM, Dilkes BP, Tyagi A et al (2014) The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell 26:181–194
Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341
Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17
Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261
Robertson FM, Gundappa MK, Grammes F et al (2017) Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol 18:111
Santos JL, Alfaro D, Sanchez-Moran E et al (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540
Marburger S, Monnahan P, Seear PJ et al (2019) Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun 10:5218
Schmickl R, Koch MA (2011) Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A 108:14192–14197
Novikova PY, Brennan IG, Booker W et al (2020) Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus. PLoS Genet 16:e1008769
Schmickl R, Yant L (2021) Adaptive introgression: how polyploidy reshapes gene flow landscapes. New Phytol 230(2):457–461
Lafon-Placette C, Hatorangan MR, Steige KA et al (2018) Paternally expressed imprinted genes associate with hybridization barriers in Capsella. Nat Plants 4:352–357
Johnston SA, Hanneman RE Jr (1982) Manipulations of endosperm balance number overcome crossing barriers between diploid solanum species. Science 217:446–448
Novikova PY, Hohmann N, Nizhynska V et al (2016) Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat Genet 48:1077–1082
The 1001 Genomes Consortium (2016) 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491
Long Q, Rabanal FA, Meng D et al (2013) Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet 45:884–890
Lloyd A, Bomblies K (2016) Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr Opin Plant Biol 30:116–122
DavÃn AA, Tricou T, Tannier E et al (2020) Zombi: a phylogenetic simulator of trees, genomes and sequences that accounts for dead linages. Bioinformatics 36:1286–1288
Gourlé H, Karlsson-Lindsjö O, Hayer J et al (2019) Simulating Illumina metagenomic data with InSilicoSeq. Bioinformatics 35:521–522
Novikova PY, Hohmann N, Van de Peer Y (2018) Polyploid Arabidopsis species originated around recent glaciation maxima. Curr Opin Plant Biol 42:8–15
Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760
Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303
Weiss CL, Pais M, Cano LM et al (2018) nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform 19:122
R Core Team (2020) R: a language and environment for statistical computing
Hohmann N, Wolf EM, Lysak MA et al (2015) A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27:2770–2784
Song K, Li L, Zhang G (2016) Coverage recommendation for genotyping analysis of highly heterologous species using next-generation sequencing technology. Sci Rep 6:35736
Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528
Gel B, Serra E (2017) karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33:3088–3090
Vurture GW, Sedlazeck FJ, Nattestad M et al (2017) GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33:2202–2204
Sun H, Ding J, Piednoël M et al (2018) findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics 34:550–557
Becher H, Brown MR, Powell G et al (2020) Maintenance of species differences in closely related tetraploid parasitic Euphrasia (Orobanchaceae) on an Isolated Island. Plant Commun 1:100105
He D, Choi A, Pipatsrisawat K et al (2010) Optimal algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics 26:i183–i190
Acknowledgments
We thank Robin Burns, Filip Kolář, Matt Johnson, and Arthur Zwaenepoel for their insights and advice during the preparation of this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Scott, A.D., Van de Velde, J.D., Novikova, P.Y. (2023). Inference of Polyploid Origin and Inheritance Mode from Population Genomic Data. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_15
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2561-3_15
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2560-6
Online ISBN: 978-1-0716-2561-3
eBook Packages: Springer Protocols