Skip to main content

Inference of Polyploid Origin and Inheritance Mode from Population Genomic Data

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

Abstract

Whole-genome duplications yield varied chromosomal pairing patterns, ranging from strictly bivalent to multivalent, resulting in disomic and polysomic inheritance modes. In the bivalent case, homeologous chromosomes form pairs, where in a multivalent pattern all copies are homologous and are therefore free to pair and recombine. As sufficient sequencing data is more readily available than high-quality cytological assessments of meiotic behavior or population genetic assessment of allelic segregation, especially for non-model organisms, bioinformatics approaches to infer origins and inheritance modes of polyploids using short-read sequencing data are attractive. Here we describe two such approaches, where the first is based on distributions of allelic read depth at heterozygous sites within an individual, as the expectations of such distributions are different for disomic and polysomic inheritance modes. The second approach is more laborious and based on a phylogenetic assessment of partially phased haplotypes of a polyploid in comparison to the closest diploid relatives. We discuss the sources of deviations from expected inheritance patterns, advantages and pitfalls of both methods, effects of mating types on the performance of the methods, and possible future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stebbins GL Jr (1947) Types of polyploids; their classification and significance. Adv Genet 1:403–429

    Article  Google Scholar 

  2. Li Z, McKibben MTW, Finch GS et al (2021) Patterns and processes of diploidization in land plants. Annu Rev Plant Biol 72:387–410

    Article  CAS  Google Scholar 

  3. Soltis DE, Soltis PS, Rieseberg LH (1993) Molecular data and the dynamic nature of polyploidy. CRC Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  4. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  5. Muller HJ (1914) A new mode of segregation in Gregory’s tetraploid primulas. Am Nat 48:508–512

    Article  Google Scholar 

  6. Little TM (1945) Gene segregation in autotetraploids. Bot Rev 11:60

    Article  Google Scholar 

  7. Darlington CD (1929) Chromosome behaviour and structural hybridity in theTradescantiae. J Genet 21:207–286

    Article  Google Scholar 

  8. Butruille DV, Boiteux LS (2000) Selection-mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency and subchromosomal localization of deleterious mutations. Proc Natl Acad Sci U S A 97(12):6608–6613

    Article  CAS  Google Scholar 

  9. Eriksson JS, de Sousa F, Bertrand YJK et al (2018) Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evol Biol 18:9

    Article  Google Scholar 

  10. Stift M, Berenos C, Kuperus P et al (2008) Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (yellow cress) microsatellite data. Genetics 179:2113–2123

    Article  Google Scholar 

  11. Campoy JA, Sun H, Goel M et al (2020) Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Genome Biol 21:306

    Article  CAS  Google Scholar 

  12. Sun H, Jiao W-B, Krause K et al (2021) Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. https://www.biorxiv.org/content/10.1101/2021.05.15.444292v1

  13. Hollister JD, Arnold BJ, Svedin E et al (2012) Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 8:e1003093

    Article  Google Scholar 

  14. Burns R, Mandáková T, Jagoda J et al (2020) Gradual evolution of allopolyploidy in Arabidopsis suecica. https://www.biorxiv.org/content/10.1101/2020.08.24.264432v1

  15. Novikova PY, Tsuchimatsu T, Simon S et al (2017) Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica. Mol Biol Evol 34:957–968

    CAS  Google Scholar 

  16. Akama S, Shimizu-Inatsugi R, Shimizu KK et al (2014) Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis. Nucleic Acids Res 42:e46

    Article  CAS  Google Scholar 

  17. Paape T, Briskine RV, Halstead-Nussloch G et al (2018) Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nat Commun 9:3909

    Article  Google Scholar 

  18. Yant L, Hollister JD, Wright KM et al (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23:2151–2156

    Article  CAS  Google Scholar 

  19. Monnahan P, Kolář F, Baduel P et al (2019) Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol 3:457–468

    Article  Google Scholar 

  20. Meirmans PG, Van Tienderen PH (2013) The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity 110:131–137

    Article  CAS  Google Scholar 

  21. Gaeta RT, Chris Pires J (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    Article  CAS  Google Scholar 

  22. Zhang Z, Gou X, Xun H et al (2020) Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proc Natl Acad Sci U S A 117:14561–14571

    Article  CAS  Google Scholar 

  23. Edger PP, McKain MR, Bird KA et al (2018) Subgenome assignment in allopolyploids: challenges and future directions. Curr Opin Plant Biol 42:76–80

    Article  CAS  Google Scholar 

  24. Chester M, Gallagher JP, Symonds VV et al (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci U S A 109:1176–1181

    Article  CAS  Google Scholar 

  25. Bertioli DJ, Jenkins J, Clevenger J et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877–884

    Article  CAS  Google Scholar 

  26. Wu Y, Lin F, Zhou Y et al (2020) Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids. Natl Sci Rev 8(5):nwaa277

    Google Scholar 

  27. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  28. Sears ER (1958) Intergenomic chromosome relationships in hexaploid wheat. Proc Int Congr Genet 2:258–259

    Google Scholar 

  29. Sears ER (1977) Genetics society of Canada award of excellence lecture an induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Article  Google Scholar 

  30. Jenczewski E, Eber F, Grimaud A et al (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    Article  CAS  Google Scholar 

  31. Henry IM, Dilkes BP, Tyagi A et al (2014) The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell 26:181–194

    Article  CAS  Google Scholar 

  32. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  CAS  Google Scholar 

  33. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    Article  CAS  Google Scholar 

  34. Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261

    Article  CAS  Google Scholar 

  35. Robertson FM, Gundappa MK, Grammes F et al (2017) Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol 18:111

    Article  Google Scholar 

  36. Santos JL, Alfaro D, Sanchez-Moran E et al (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540

    Article  CAS  Google Scholar 

  37. Marburger S, Monnahan P, Seear PJ et al (2019) Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun 10:5218

    Article  Google Scholar 

  38. Schmickl R, Koch MA (2011) Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A 108:14192–14197

    Article  Google Scholar 

  39. Novikova PY, Brennan IG, Booker W et al (2020) Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus. PLoS Genet 16:e1008769

    Article  CAS  Google Scholar 

  40. Schmickl R, Yant L (2021) Adaptive introgression: how polyploidy reshapes gene flow landscapes. New Phytol 230(2):457–461

    Article  Google Scholar 

  41. Lafon-Placette C, Hatorangan MR, Steige KA et al (2018) Paternally expressed imprinted genes associate with hybridization barriers in Capsella. Nat Plants 4:352–357

    Article  CAS  Google Scholar 

  42. Johnston SA, Hanneman RE Jr (1982) Manipulations of endosperm balance number overcome crossing barriers between diploid solanum species. Science 217:446–448

    Article  CAS  Google Scholar 

  43. Novikova PY, Hohmann N, Nizhynska V et al (2016) Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat Genet 48:1077–1082

    Article  CAS  Google Scholar 

  44. The 1001 Genomes Consortium (2016) 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491

    Article  Google Scholar 

  45. Long Q, Rabanal FA, Meng D et al (2013) Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet 45:884–890

    Article  CAS  Google Scholar 

  46. Lloyd A, Bomblies K (2016) Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr Opin Plant Biol 30:116–122

    Article  Google Scholar 

  47. Davín AA, Tricou T, Tannier E et al (2020) Zombi: a phylogenetic simulator of trees, genomes and sequences that accounts for dead linages. Bioinformatics 36:1286–1288

    Article  Google Scholar 

  48. Gourlé H, Karlsson-Lindsjö O, Hayer J et al (2019) Simulating Illumina metagenomic data with InSilicoSeq. Bioinformatics 35:521–522

    Article  Google Scholar 

  49. Novikova PY, Hohmann N, Van de Peer Y (2018) Polyploid Arabidopsis species originated around recent glaciation maxima. Curr Opin Plant Biol 42:8–15

    Article  Google Scholar 

  50. Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  Google Scholar 

  51. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  52. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  53. McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  Google Scholar 

  54. Weiss CL, Pais M, Cano LM et al (2018) nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform 19:122

    Article  Google Scholar 

  55. R Core Team (2020) R: a language and environment for statistical computing

    Google Scholar 

  56. Hohmann N, Wolf EM, Lysak MA et al (2015) A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27:2770–2784

    CAS  Google Scholar 

  57. Song K, Li L, Zhang G (2016) Coverage recommendation for genotyping analysis of highly heterologous species using next-generation sequencing technology. Sci Rep 6:35736

    Article  CAS  Google Scholar 

  58. Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  CAS  Google Scholar 

  59. Gel B, Serra E (2017) karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33:3088–3090

    Article  CAS  Google Scholar 

  60. Vurture GW, Sedlazeck FJ, Nattestad M et al (2017) GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33:2202–2204

    Article  CAS  Google Scholar 

  61. Sun H, Ding J, Piednoël M et al (2018) findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics 34:550–557

    Article  CAS  Google Scholar 

  62. Becher H, Brown MR, Powell G et al (2020) Maintenance of species differences in closely related tetraploid parasitic Euphrasia (Orobanchaceae) on an Isolated Island. Plant Commun 1:100105

    Article  Google Scholar 

  63. He D, Choi A, Pipatsrisawat K et al (2010) Optimal algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics 26:i183–i190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Robin Burns, Filip Kolář, Matt Johnson, and Arthur Zwaenepoel for their insights and advice during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polina Yu Novikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scott, A.D., Van de Velde, J.D., Novikova, P.Y. (2023). Inference of Polyploid Origin and Inheritance Mode from Population Genomic Data. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics