Skip to main content

Mass Cytometry Assessment of Cell Phenotypes and Signaling States in Human Whole Blood

Part of the Methods in Molecular Biology book series (MIMB,volume 2543)

Abstract

Phosphoflow is a powerful tool that allows researchers to measure distinct signaling responses to various stimuli in multiple subpopulations of cells. Extension of this technique to mass cytometry (cytometry by time-of-flight or CyTOF) allows many more cell phenotypes and signaling nodes to be interrogated in parallel. The use of fresh whole blood is ideal for capturing the in vivo signaling state of all leukocytes, including granulocytes. In this chapter, we provide a detailed protocol for performing CyTOF phosphoflow in human whole blood, using cytokines and other stimuli. Barcoding and combining of multiple samples and other techniques to reduce batch effects and provide optimal comparability between samples/stimulations are also described.

Key words

  • Whole blood
  • Phosphoflow
  • Mass cytometry
  • CyTOF
  • Signaling
  • Cytokines

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2553-8_10
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2553-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events., cytometry. Part A J Intl Soc Anal Cytol 55:61–70

    Google Scholar 

  2. Irish JM, Hovland R, Krutzik PO et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–228

    CrossRef  CAS  Google Scholar 

  3. Perez OD, Mitchell D, Campos R et al (2005) Multiparameter analysis of intracellular phosphoepitopes in immunophenotyped cell populations by flow cytometry., Current protocols in cytometry / editorial board. J. Paul Robinson, managing editor ... [et al.]. Chapter 6, Unit 6.20

    Google Scholar 

  4. Ornatsky OI, Kinach R, Bandura DR et al (2008) Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. J Anal At Spectrom 23:463–469

    CrossRef  CAS  Google Scholar 

  5. Tanner SD, Bandura DR, Ornatsky O et al (2008) Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl Chem:80

    Google Scholar 

  6. Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822

    CrossRef  CAS  Google Scholar 

  7. Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    CrossRef  CAS  Google Scholar 

  8. Fernandez R, Maecker H (2015) Cytokine-stimulated Phosphoflow of PBMC using CyTOF mass cytometry. Bio-Protocol 6:1496

    Google Scholar 

  9. Fernandez R, Maecker H (2015) Cytokine-stimulated Phosphoflow of whole blood using CyTOF mass cytometry. Bio-Protocol 6:1495

    Google Scholar 

  10. Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3:361–368

    CrossRef  CAS  Google Scholar 

  11. Zunder ER, Finck R, Behbehani GK et al (2015) Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat Protoc 10:316–333

    CrossRef  CAS  Google Scholar 

  12. Bodenmiller B, Zunder ER, Finck R et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30:858–867

    CrossRef  CAS  Google Scholar 

  13. Behbehani GK, Thom C, Zunder ER et al (2014) Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining., cytometry. Part A J Intl Soc Anal Cytol 85:1011–1019

    CrossRef  Google Scholar 

  14. Finak G, Perez J-M, Weng A et al (2010) Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinform 11:546

    CrossRef  Google Scholar 

  15. B. Gaudillière, G.K. Fragiadakis, R.V. Bruggner, et al. (2014) Clinical recovery from surgery correlates with single-cell immune signatures., science translational medicine. 6, 255ra131

    Google Scholar 

  16. Mei HE, Leipold MD, Schulz AR et al (2015) Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J Immunol 194:2022–2031

    CrossRef  CAS  Google Scholar 

  17. Schulz AR, Baumgart S, Schulze J et al (2019) Stabilizing antibody cocktails for mass cytometry., cytometry. Part A J Intl Soc Anal Cytol 95:910–916

    CAS  Google Scholar 

  18. Finck R, Simonds EF, Jager A et al (2013) Normalization of mass cytometry data with bead standards., cytometry. Part A J Intl Soc Anal Cytol 83:483–494

    CrossRef  Google Scholar 

  19. R.P. Schuyler, C. Jackson, J.E. Garcia-Perez, et al. (2019) Minimizing batch effects in mass cytometry data., Frontiers in immunology. 10, 2367

    Google Scholar 

  20. Lee BH, Kelly G, Bradford S et al (2019) A modified injector and sample acquisition protocol can improve data quality and reduce inter-instrument variability of the Helios mass cytometer., cytometry. Part A J Intl Soc Anal Cytol 95:1019–1030

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors thank Rosemary Fernandez for initial protocol development and Prabhu Arunachalam for help in establishing the gating hierarchy. This work was supported by grants 2U19AI057229 and 1U24CA224309 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holden T. Maecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Sigal, N., Maecker, H.T. (2022). Mass Cytometry Assessment of Cell Phenotypes and Signaling States in Human Whole Blood. In: Barcenilla, H., Diaz, D. (eds) Apoptosis and Cancer. Methods in Molecular Biology, vol 2543. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2553-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2553-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2552-1

  • Online ISBN: 978-1-0716-2553-8

  • eBook Packages: Springer Protocols