Skip to main content

In Vitro Biophysical Characterization of Candidalysin: A Fungal Peptide Toxin

  • Protocol
  • First Online:
Candida Species

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2542))

Abstract

In 2016, the first peptide toxin in any human fungal pathogen was identified. It was discovered in Candida albicans and was named candidalysin. Candidalysin is an amphipathic cationic peptide that damages cell membranes. Like most lytic peptides, candidalysin shows alpha-helical secondary structure. As the helicity and the membrane lytic activity of candidalysin are key factors for pathogenicity, here we describe in vitro approaches to monitor both its membrane-lytic function and the secondary structure. First, membrane permeabilization activity of candidalysin is measured in real time by direct electrical recording. Second, the secondary structure and helicity of candidalysin are determined by circular dichroism spectroscopy. These biophysical methods provide a means to characterize the activity and physical properties of candidalysin in vitro and will be useful in determining the structural and functional features of candidalysin and other similar cationic membrane-active peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B (2012) Candida albicans dimorphism as a therapeutic target. Expert Rev Anti-Infect Ther 10:85–93

    Article  PubMed  Google Scholar 

  2. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6:e17046

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mogavero S, Sauer FM, Brunke S, Allert S, Schulz D, Wisgott S, Jablonowski N, Elshafee O, Krüger T, Kniemeyer O, Brakhage AA, Naglik JR, Dolk E, Hube B (2021) Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cell Microbiol 23:e13378

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, Murciano C, Blagojevic M, Thavaraj S, Förster TM, Hebecker B, Kasper L, Vizcay G, Iancu SI, Kichik N, Häder A, Kurzai O, Luo T, Krüger T, Kniemeyer O, Cota E, Bader O, Wheeler RT, Gutsmann T, Hube B, Naglik JR (2016) Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532:64–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richardson JP, Mogavero S, Moyes DL, Mariana B, Krüger T, Verma AH, Coleman BM, De La Cruz Diaz J, Schulz D, Ponde NO, Carrano G, Kniemeyer O, Naglik JR (2018) Processing of Candida albicans Ece1p is critical for candidalysin maturation and fungal virulence. mBio 9:e02178-17

    Article  PubMed  PubMed Central  Google Scholar 

  7. Richardson JP, Willems HME, Moyes DL, Shoaie S, Barker KS, Tan L, Palmer GE, Hube B, Naglik JR, Peters BM (2018) Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect Immun 86:e00645-17

    Article  PubMed  PubMed Central  Google Scholar 

  8. Allert S, Förster TM, Svensson C, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, Morschhäuser J, Figge T, Jacobsen ID, Naglik JR, Kasper L, Mogavero S (2018) Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio 9:e00915-18

    Google Scholar 

  9. Martins RM, Sforça ML, Amino R, Juliano MA, Oyzama S, Juliano L, Pertinhez TA, Spisni A, Schenkman S (2006) Lytic activity and structural differences of amphipathic peptides derived from trialysin. Biochemistry 45:1765–1774

    Article  CAS  PubMed  Google Scholar 

  10. Sani MA, Separovic F (2016) How membrane-active peptides get into lipid membranes. Acc Chem Res 49:1130–1138

    Article  CAS  PubMed  Google Scholar 

  11. Lee TH, Hofferek V, Separovic F, Reid GE, Aguilar MI (2019) The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr Opin Chem Biol 52:85–92

    Article  CAS  PubMed  Google Scholar 

  12. Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry 36:1826–1835

    Article  CAS  PubMed  Google Scholar 

  13. Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88:1828–1837

    Article  CAS  PubMed  Google Scholar 

  14. van den Bogaart G, Guzmán JV, Mika JT, Poolman B (2008) On the mechanism of pore formation by melittin. J Biol Chem 283:33854–33857

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee MT, Sun TL, Hung WC, Huang HW (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci U S A 110:14243–14248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sani MA, Le Brun AP, Separovic F (1862) The antimicrobial peptide maculatin self assembles in parallel to form a pore in phospholipid bilayers. Biochim Biophys Acta Biomembr 2020:183204

    Google Scholar 

  17. Naglik JR, Gaffen SL, Hube B (2019) Candidalysin: discovery and function in Candida albicans infections. Curr Opin Microbiol 52:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frey CM, Barth H, Kranz C, Mizaikoff B (2018) Horizontal black lipid bilayer membranes for studying pore-forming toxins. Anal Methods 10:3153–3161

    Article  CAS  Google Scholar 

  19. Baaken G, Sondermann M, Schlemmer C, Rühe J, Behrends JC (2008) Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip 8:938–944

    Article  CAS  PubMed  Google Scholar 

  20. Austermeier S, Pekmezović M, Porschitz P, Lee S, Kichik N, Moyes DL, Ho J, Kotowicz NK, Naglik JR, Hube B, Gresnigt MS (2021) Albumin neutralizes hydrophobic toxins and modulates Candida albicans pathogenicity. mBio 12:1–17

    Google Scholar 

  21. Greenfield NJ (2007) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  Google Scholar 

  22. Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Réfrégiers M, Kardos J (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci U S A 112:E3095–E3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  CAS  PubMed  Google Scholar 

  24. Domínguez A, Fernández A, Gonzalez N, Iglesias E, Montenegro L (1997) Determination of critical micelle concentration of some surfactants by three techniques. J Chem Educ 74:1227–1231

    Article  Google Scholar 

  25. Curtis HJ, Cole KS (1942) Membrane resting and action potentials from the squid giant axon. J Cell Physiol 19:135–144

    Article  CAS  Google Scholar 

  26. Sikorska E, Wyrzykowski D, Szutkowski K, Greber K, Lubecka EA, Zhukov I (2016) Thermodynamics, size, and dynamics of zwitterionic dodecylphosphocholine and anionic sodium dodecyl sulfate mixed micelles. J Therm Anal Calorim 123:511–523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Wellcome Trust Investigator Award 214229_Z_18_Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian R. Naglik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, S., Kichik, N., Hepworth, O.W., Richardson, J.P., Naglik, J.R. (2022). In Vitro Biophysical Characterization of Candidalysin: A Fungal Peptide Toxin. In: Calderone, R. (eds) Candida Species. Methods in Molecular Biology, vol 2542. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2549-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2549-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2548-4

  • Online ISBN: 978-1-0716-2549-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics