Skip to main content

Anti-Amyloid Drug Screening Methods Using Bacterial Inclusion Bodies

Part of the Methods in Molecular Biology book series (MIMB,volume 2538)

Abstract

Amyloid aggregation is linked to a number of human disorders that range from non-neurological illnesses such as type 2 diabetes to neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. The formation of insoluble protein aggregates with amyloid conformation inside bacteria, namely, in bacterial inclusion bodies, offers the possibility to use bacteria as simple models to study amyloid aggregation processes and potential effects of both anti-amyloid drugs and/or pro-aggregative compounds. This chapter describes fast, simple, inexpensive, highly reproducible, and tunable in vitro and in cellulo methods that use bacterial inclusion bodies as preliminary screening tools for anti-amyloid drugs.

Key words

  • Bacterial inclusion body
  • Amyloid aggregation
  • Drug screening
  • Conformational disease

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68

    CrossRef  CAS  Google Scholar 

  2. Kopito RR, Ron D (2000) Conformational disease. Nat Cell Biol 2:E207–E209

    CrossRef  CAS  Google Scholar 

  3. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24:179–185

    CrossRef  CAS  Google Scholar 

  4. Mitraki A (2010) Protein aggregation. In: Advances in protein chemistry and structural biology, pp 89–125

    CrossRef  Google Scholar 

  5. Wang L, Maji SK, Sawaya MR et al (2008) Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol 6:e195

    CrossRef  Google Scholar 

  6. Morell M, Bravo R, Espargaró A et al (2008) Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta, Mol Cell Res 1783:1815–1825

    CrossRef  CAS  Google Scholar 

  7. Villar-Pique A, Espargaro A, Ventura S et al (2014) Screening for amyloid aggregation: in-silico, in-vitro and in-vivo detection. Curr Protein Pept Sci 15:477–489

    CrossRef  CAS  Google Scholar 

  8. Carrió MM, Corchero JL, Villaverde A (1999) Proteolytic digestion of bacterial inclusion body proteins during dynamic transition between soluble and insoluble forms. Biochim Biophys Acta – Protein Struct Mol Enzymol 1434:170–176

    CrossRef  Google Scholar 

  9. Carrió M, González-Montalbán N, Vera A et al (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    CrossRef  Google Scholar 

  10. Wasmer C, Benkemoun L, Sabaté R et al (2009) Solid-State NMR Spectroscopy Reveals that E. coli Inclusion Bodies of HET-s(218–289) are Amyloids. Angew Chemie Int Ed 48:4858–4860

    CrossRef  CAS  Google Scholar 

  11. Groot NS, Sabate R, Ventura S (2009) Amyloids in bacterial inclusion bodies. Trends Biochem Sci 34:408–416

    CrossRef  Google Scholar 

  12. Groot NS, Espargaró A, Morell M et al (2008) Studies on bacterial inclusion bodies. Future Microbiol 3:423–435

    CrossRef  Google Scholar 

  13. Dasari M, Espargaro A, Sabate R et al (2011) Bacterial inclusion bodies of Alzheimer’s disease β-amyloid peptides can be employed to study native-like aggregation intermediate states. Chembiochem 12:407–423

    CrossRef  CAS  Google Scholar 

  14. Gupta V, Sudhakaran IP, Islam Z et al (2020) Expression, purification and characterization of α-synuclein fibrillar specific scFv from inclusion bodies. PLoS One 15:e0241773

    CrossRef  CAS  Google Scholar 

  15. Swietnicki W, Petersen RB, Gambetti P et al (1998) Familial mutations and the thermodynamic stability of the recombinant human prion protein. J Biol Chem 273:31048–31052

    CrossRef  CAS  Google Scholar 

  16. Askanas V, Engel WK, McFerrin J et al (2003) Transthyretin Val122Ile, accumulated A, and inclusion-body myositis aspects in cultured muscle. Neurology 61:257–260

    CrossRef  CAS  Google Scholar 

  17. Umetsu M, Tsumoto K, Nitta S et al (2005) Nondenaturing solubilization of β2 microglobulin from inclusion bodies by l-arginine. Biochem Biophys Res Commun 328:189–197

    CrossRef  CAS  Google Scholar 

  18. Redwan EM, Matar SM, El-Aziz GA et al (2007) Synthesis of the human insulin gene: protein expression, scaling up and bioactivity. Prep Biochem Biotechnol 38:24–39

    CrossRef  Google Scholar 

  19. Li M, Su Z (2002) Refolding human lysozyme produced as an inclusion body by urea concentration and pH gradient ion exchange chromatography. Chromatographia 56:33–38

    CrossRef  CAS  Google Scholar 

  20. Hou X-Q, Yan R, Yang C et al (2014) A novel assay for high-throughput screening of anti-Alzheimer’s disease drugs to determine their efficacy by real-time monitoring of changes in PC12 cell proliferation. Int J Mol Med 33:543–549

    CrossRef  CAS  Google Scholar 

  21. Villar-Piqué A, Espargaró A, Ventura S et al (2016) In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time. Biotechnol J 11:172–177

    CrossRef  Google Scholar 

  22. Cornejo A, Aguilar Sandoval F, Caballero L et al (2017) Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J Enzyme Inhib Med Chem 32:945–953

    CrossRef  CAS  Google Scholar 

  23. Cornejo A, Jiménez JM, Caballero L et al (2011) Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease. J Alzheimers Dis 27:143–153

    CrossRef  CAS  Google Scholar 

  24. Chua SW, Cornejo A, van Eersel J et al (2017) The polyphenol Altenusin inhibits in vitro fibrillization of tau and reduces induced tau pathology in primary neurons. ACS Chem Neurosci 8:743–751

    CrossRef  CAS  Google Scholar 

  25. Saleem S, Kannan RR (2018) Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov 4:45

    CrossRef  Google Scholar 

  26. Prüßing K, Voigt A, Schulz JB (2013) Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener 8:35

    CrossRef  Google Scholar 

  27. Luo Y (2006) Alzheimer’s disease, the nematode Caenorhabditis elegans, and ginkgo biloba leaf extract. Life Sci 78:2066–2072

    CrossRef  CAS  Google Scholar 

  28. García-Fruitõs E, Sabate R, De GNS et al (2011) Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS J 278:2419–2427

    CrossRef  Google Scholar 

  29. Carrió MM, Cubarsi R, Villaverde A (2000) Fine architecture of bacterial inclusion bodies. FEBS Lett 471:7–11

    CrossRef  Google Scholar 

  30. Espargaró A, Sabaté R, Ventura S (2008) Kinetic and thermodynamic stability of bacterial intracellular aggregates. FEBS Lett 582:3669–3673

    CrossRef  Google Scholar 

  31. Villar-Piqué A, Espargaró A, Sabaté R et al (2012) Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors. Microb Cell Factories 11:1–11

    CrossRef  Google Scholar 

  32. Jarrett JT, Lansbury PT (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    CrossRef  CAS  Google Scholar 

  33. Sabaté R, Gallardo M, Estelrich J (2003) An autocatalytic reaction as a model for the kinetics of the aggregation of β-amyloid. Biopolymers 71:190–195

    CrossRef  Google Scholar 

  34. Darghal N, Garnier-Suillerot A, Salerno M (2006) Mechanism of thioflavin T accumulation inside cells overexpressing P-glycoprotein or multidrug resistance-associated protein: role of lipophilicity and positive charge. Biochem Biophys Res Commun 343:623–629

    CrossRef  CAS  Google Scholar 

  35. Espargaró A, Medina A, Di PO et al (2016) Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs. Sci Rep 6:23349

    CrossRef  Google Scholar 

  36. Espargaró A, Ginex T, Vadell M et al (2017) Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-Alzheimer drugs. J Nat Prod 80:278–289

    CrossRef  Google Scholar 

  37. Espargaró A, Sabate R, Ventura S (2012) Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation. Mol BioSyst 8:2839

    CrossRef  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministerio de Ciencia e Innovación (Projects PID2020-115537RB-100, CTQ2017-88446-R and RED2018-102471-T; MCIN/AEI/10.13039/501100011033) is kindly acknowledged. P.G. acknowledges the Institució Catalana de Recerca i Estudis Avançats (ICREA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Espargaró .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Caballero, A.B., Gamez, P., Sabate, R., Espargaró, A. (2022). Anti-Amyloid Drug Screening Methods Using Bacterial Inclusion Bodies. In: Arluison, V., Wien, F., Marcoleta, A. (eds) Bacterial Amyloids. Methods in Molecular Biology, vol 2538. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2529-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2529-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2528-6

  • Online ISBN: 978-1-0716-2529-3

  • eBook Packages: Springer Protocols