Skip to main content

Functional Annotation of Custom Transcriptomes

  • Protocol
  • First Online:
Alternative Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2537))

Abstract

Many eukaryotic genes can give rise to different alternative transcripts depending on stage of development, cell type, and physiological cues. Current transcriptome-wide sequencing technologies highlight the remarkable extent of this regulation in metazoans and allow for RNA isoforms to be profiled in increasingly small biological samples and with a growing confidence. Understanding biological functions of sample-specific transcripts is a major challenge in genomics and RNA processing fields. Here we describe simple bioinformatics workflows that facilitate this task by streamlining reference-guided annotation of novel transcripts. A key part of our protocol is the R package factR that rapidly matches custom-assembled transcripts to their likely host genes, deduces the sequence and domain structure of novel protein products, and predicts sensitivity of newly identified RNA isoforms to nonsense-mediated decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landry JR, Mager DL, Wilhelm BT (2003) Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet 19(11):640–648. https://doi.org/10.1016/j.tig.2003.09.014

    Article  CAS  PubMed  Google Scholar 

  2. Manning KS, Cooper TA (2017) The roles of RNA processing in translating genotype to phenotype. Nat Rev Mol Cell Biol 18(2):102–114. https://doi.org/10.1038/nrm.2016.139

    Article  CAS  PubMed  Google Scholar 

  3. Ule J, Blencowe BJ (2019) Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell 76(2):329–345. https://doi.org/10.1016/j.molcel.2019.09.017

    Article  CAS  PubMed  Google Scholar 

  4. Tian B, Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18(1):18–30. https://doi.org/10.1038/nrm.2016.116

    Article  CAS  PubMed  Google Scholar 

  5. Vuong CK, Black DL, Zheng S (2016) The neurogenetics of alternative splicing. Nat Rev Neurosci 17(5):265–281. https://doi.org/10.1038/nrn.2016.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18(7):437–451. https://doi.org/10.1038/nrm.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furlanis E, Scheiffele P (2018) Regulation of neuronal differentiation, function, and plasticity by alternative splicing. Annu Rev Cell Dev Biol 34:451–469. https://doi.org/10.1146/annurev-cellbio-100617-062826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furlanis E, Traunmuller L, Fucile G, Scheiffele P (2019) Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs. Nat Neurosci 22(10):1709–1717. https://doi.org/10.1038/s41593-019-0465-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tapial J, Ha KCH, Sterne-Weiler T, Gohr A, Braunschweig U, Hermoso-Pulido A, Quesnel-Vallieres M, Permanyer J, Sodaei R, Marquez Y, Cozzuto L, Wang X, Gomez-Velazquez M, Rayon T, Manzanares M, Ponomarenko J, Blencowe BJ, Irimia M (2017) An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res 27(10):1759–1768. https://doi.org/10.1101/gr.220962.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamid FM, Makeyev EV (2014) Emerging functions of alternative splicing coupled with nonsense-mediated decay. Biochem Soc Trans 42(4):1168–1173. https://doi.org/10.1042/BST20140066

    Article  CAS  PubMed  Google Scholar 

  11. Hwang J, Maquat LE (2011) Nonsense-mediated mRNA decay (NMD) in animal embryogenesis: to die or not to die, that is the question. Curr Opin Genet Dev 21(4):422–430. https://doi.org/10.1016/j.gde.2011.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476. https://doi.org/10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415. https://doi.org/10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  14. Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, Park JY, Yehia G, Tian B (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139. https://doi.org/10.1038/nmeth.2288

    Article  CAS  PubMed  Google Scholar 

  15. Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C (2013) Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev 27(21):2380–2396. https://doi.org/10.1101/gad.229328.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17(4):761–772. https://doi.org/10.1261/rna.2581711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arzalluz-Luque A, Conesa A (2018) Single-cell RNAseq for the study of isoforms-how is that possible? Genome Biol 19(1):110. https://doi.org/10.1186/s13059-018-1496-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Packer JS, Zhu Q, Huynh C, Sivaramakrishnan P, Preston E, Dueck H, Stefanik D, Tan K, Trapnell C, Kim J, Waterston RH, Murray JI (2019) A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 365(6459):eaax1971. https://doi.org/10.1126/science.aax1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW (2018) Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360(6391):eaaq1736. https://doi.org/10.1126/science.aaq1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and processing, Library preparation and sequencing, Computational data analysis, Cell type annotation, Writing group, Supplemental text writing group, Principal investigators (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562(7727):367–372. https://doi.org/10.1038/s41586-018-0590-4

    Article  CAS  Google Scholar 

  21. Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, Haring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S (2018) Molecular architecture of the mouse nervous system. Cell 174(4):999–1014.e22. https://doi.org/10.1016/j.cell.2018.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hardwick SA, Joglekar A, Flicek P, Frankish A, Tilgner HU (2019) Getting the entire message: progress in isoform sequencing. Front Genet 10:709. https://doi.org/10.3389/fgene.2019.00709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oikonomopoulos S, Bayega A, Fahiminiya S, Djambazian H, Berube P, Ragoussis J (2020) Methodologies for transcript profiling using long-read technologies. Front Genet 11:606. https://doi.org/10.3389/fgene.2020.00606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20(11):631–656. https://doi.org/10.1038/s41576-019-0150-2

    Article  CAS  PubMed  Google Scholar 

  25. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7(11):909–912. https://doi.org/10.1038/nmeth.1517

    Article  CAS  PubMed  Google Scholar 

  26. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092. https://doi.org/10.1093/bioinformatics/bts094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bushmanova E, Antipov D, Lapidus A, Prjibelski AD (2019) rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8(9):giz100. https://doi.org/10.1093/gigascience/giz100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nip KM, Chiu R, Yang C, Chu J, Mohamadi H, Warren RL, Birol I (2020) RNA-bloom enables reference-free and reference-guided sequence assembly for single-cell transcriptomes. Genome Res 30(8):1191–1200. https://doi.org/10.1101/gr.260174.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  32. Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ (2016) GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Methods Mol Biol 1418:283–334. https://doi.org/10.1007/978-1-4939-3578-9_15

    Article  PubMed  Google Scholar 

  33. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100. https://doi.org/10.1093/bioinformatics/bty191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7(3):562–578. https://doi.org/10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295. https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M (2019) Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20(1):278. https://doi.org/10.1186/s13059-019-1910-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song L, Sabunciyan S, Florea L (2016) CLASS2: accurate and efficient splice variant annotation from RNA-seq reads. Nucleic Acids Res 44(10):e98. https://doi.org/10.1093/nar/gkw158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shao M, Kingsford C (2017) Accurate assembly of transcripts through phase-preserving graph decomposition. Nat Biotechnol 35(12):1167–1169. https://doi.org/10.1038/nbt.4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu J, Liu X, Ren X, Li G (2019) scRNAss: a single-cell RNA-seq assembler via imputing dropouts and combing junctions. Bioinformatics 35(21):4264–4271. https://doi.org/10.1093/bioinformatics/btz240

    Article  CAS  PubMed  Google Scholar 

  40. Tang AD, Soulette CM, van Baren MJ, Hart K, Hrabeta-Robinson E, Wu CJ, Brooks AN (2020) Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat Commun 11(1):1438. https://doi.org/10.1038/s41467-020-15171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hurt JA, Robertson AD, Burge CB (2013) Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 23(10):1636–1650. https://doi.org/10.1101/gr.157354.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E, Economo MN, Viswanathan S, Penn O, Bakken T, Menon V, Miller J, Fong O, Hirokawa KE, Lathia K, Rimorin C, Tieu M, Larsen R, Casper T, Barkan E, Kroll M, Parry S, Shapovalova NV, Hirschstein D, Pendergraft J, Sullivan HA, Kim TK, Szafer A, Dee N, Groblewski P, Wickersham I, Cetin A, Harris JA, Levi BP, Sunkin SM, Madisen L, Daigle TL, Looger L, Bernard A, Phillips J, Lein E, Hawrylycz M, Svoboda K, Jones AR, Koch C, Zeng H (2018) Shared and distinct transcriptomic cell types across neocortical areas. Nature 563(7729):72–78. https://doi.org/10.1038/s41586-018-0654-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sessegolo C, Cruaud C, Da Silva C, Cologne A, Dubarry M, Derrien T, Lacroix V, Aury J-M (2019) Transcriptome profiling of mouse samples using nanopore sequencing of cDNA and RNA molecules. Sci Rep 9(1):14908. https://doi.org/10.1038/s41598-019-51470-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elvira G, Massie B, DesGroseillers L (2006) The zinc-finger protein ZFR is critical for Staufen 2 isoform specific nucleocytoplasmic shuttling in neurons. J Neurochem 96(1):105–117. https://doi.org/10.1111/j.1471-4159.2005.03523.x

    Article  CAS  PubMed  Google Scholar 

  46. Kjærgaard T, Desdorf R, Heuck A, Olsen A, Lykke-Hartmann K (2015) The zinc finger RNA binding protein, ZFR, contributes to axon guidance in Caenorhabditis elegans. Gene 557(1):11–18. https://doi.org/10.1016/j.gene.2014.11.063

    Article  CAS  PubMed  Google Scholar 

  47. Alasoo K (2020) wiggleplotr: make read coverage plots from BigWig files. R package version 1.14.0

    Google Scholar 

  48. Morgan M, Shepherd L (2020) AnnotationHub: client to access AnnotationHub resources. R package version 2220

    Google Scholar 

  49. Colak D, Ji SJ, Porse BT, Jaffrey SR (2013) Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 153(6):1252–1265. https://doi.org/10.1016/j.cell.2013.04.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giorgi C, Yeo GW, Stone ME, Katz DB, Burge C, Turrigiano G, Moore MJ (2007) The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130(1):179–191. https://doi.org/10.1016/j.cell.2007.05.028

    Article  CAS  PubMed  Google Scholar 

  51. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448. https://doi.org/10.1016/j.molcel.2007.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by Biotechnology and Biological Sciences Research Council (BB/M007103/1 and BB/R001049/1), Estonian Research Council (PSG415 and PRG1095), and European Commission (H2020-MSCA-RISE-2016; Project ID 734791).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fursham Hamid or Eugene Makeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamid, F., Alasoo, K., Vilo, J., Makeyev, E. (2022). Functional Annotation of Custom Transcriptomes. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics