Skip to main content

Analysis of Oligonucleotide Biodistribution and Metabolization in Experimental Animals

Part of the Methods in Molecular Biology book series (MIMB,volume 2537)

Abstract

We describe methods to follow the fate of oligonucleotides after their injection into experimental animals. The quantitation in various tissues, blood or bone marrow cells is possible by chemical ligation PCR. This method works independently of chemical modifications of the oligonucleotide and/or its conjugations to lipid or peptide moieties. Moreover, metabolization intermediates can be detected by mass spectrometry. Together with a readout assay for the biochemical or physiological effects, which will differ, depending on the particular purpose of the oligonucleotide, these methods allow for a comprehensive understanding of oligonucleotide behavior in a living organism.

Key words

  • Oligonucleotide therapeutics
  • Oligonucleotide conjugates
  • Oligonucleotide biodistribution
  • Chemical ligation qPCR
  • Mass spectrometry

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2521-7_19
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2521-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25(5):1069–1075. https://doi.org/10.1016/j.ymthe.2017.03.023

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Levin AA (2019) Treating disease at the RNA level with oligonucleotides. N Engl J Med 380(1):57–70. https://doi.org/10.1056/NEJMra1705346

    CrossRef  PubMed  Google Scholar 

  3. Crooke ST, Wang S, Vickers TA, Shen W, Liang X-h (2017) Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 35(3):230–237. https://doi.org/10.1038/nbt.3779

    CAS  CrossRef  PubMed  Google Scholar 

  4. Crooke ST, Witztum JL, Bennett CF, Baker BF (2018) RNA-targeted therapeutics. Cell Metab 27(4):714–739. https://doi.org/10.1016/j.cmet.2018.03.004

    CAS  CrossRef  PubMed  Google Scholar 

  5. Boos JA, Kirk DW, Piccolotto M-L, Zuercher W, Gfeller S, Neuner P, Dattler A, Wishart WL, Von Arx F, Beverly M, Christensen J, Litherland K, van de Kerkhof E, Swart PJ, Faller T, Beyerbach A, Morrissey D, Hunziker J, Beuvink I (2013) Whole-body scanning PCR; a highly sensitive method to study the biodistribution of mRNAs, noncoding RNAs and therapeutic oligonucleotides. Nucleic Acids Res 41(15):e145. https://doi.org/10.1093/nar/gkt515

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Brunschweiger A, Gebert LFR, Lucic M, Pradere U, Jahns H, Berk C, Hunziker J, Hall J (2016) Site-specific conjugation of drug-like fragments to an antimiR scaffold as a strategy to target miRNAs inside RISC. Chem Commun 52(1):156–159. https://doi.org/10.1039/C5CC07478A

    CAS  CrossRef  Google Scholar 

  7. Halloy F, Iyer PS, Cwiek P, Ghidini A, Barman-Aksozen J, Wildner-Verhey van Wijk N, Theocharides APA, Minder EI, Schneider-Yin X, Schumperli D, Hall J (2020) Delivery of oligonucleotides to bone marrow to modulate ferrochelatase splicing in a mouse model of erythropoietic protoporphyria. Nucleic Acids Res 48(9):4658–4671. https://doi.org/10.1093/nar/gkaa229

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Kim J, Basiri B, Hassan C, Punt C, van der Hage E, den Besten C, Bartlett MG (2019) Metabolite profiling of the antisense oligonucleotide Eluforsen using liquid chromatography-mass spectrometry. Mol Ther Nucleic Acids 17:714–725. https://doi.org/10.1016/j.omtn.2019.07.006

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Sips L, Ediage EN, Ingelse B, Verhaeghe T, Dillen L (2019) LC–MS quantification of oligonucleotides in biological matrices with SPE or hybridization extraction. Bioanalysis 11(21):1941–1954. https://doi.org/10.4155/bio-2019-0117

    CAS  CrossRef  PubMed  Google Scholar 

  10. Lecha M, Puy H, Deybach J-C (2009) Erythropoietic protoporphyria. Orphanet J Rare Dis 4(1):1–10. https://doi.org/10.1186/1750-1172-4-19

    CrossRef  Google Scholar 

  11. Gouya L, Puy H, Robreau A-M, Bourgeois M, Lamoril J, Da Silva V, Grandchamp B, Deybach J-C (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat Genet 30(1):27–28. http://www.nature.com/ng/journal/v30/n1/suppinfo/ng809_S1.html

    CAS  CrossRef  Google Scholar 

  12. Amend SR, Valkenburg KC, Pienta KJ (2016) Murine hind limb long bone dissection and bone marrow isolation. J Vis Exp 110:53936. https://doi.org/10.3791/53936

    CAS  CrossRef  Google Scholar 

  13. Turnpenny P, Rawal J, Schardt T, Lamoratta S, Mueller H, Weber M, Brady K (2011) Quantitation of locked nucleic acid antisense oligonucleotides in mouse tissue using a liquid-liquid extraction LC-MS/MS analytical approach. Bioanalysis 3(17):1911–1921. https://doi.org/10.4155/bio.11.100

    CAS  CrossRef  PubMed  Google Scholar 

  14. Boos JA, Beuvink I (2016) Whole-body scanning PCR, a tool for the visualization of the in vivo biodistribution pattern of endogenous and exogenous oligonucleotides in rodents. In: Medarova Z (ed) RNA imaging: methods and protocols. Springer New York, New York, NY, pp 99–111. https://doi.org/10.1007/978-1-4939-3148-4_8

    CrossRef  Google Scholar 

  15. Yu RZ, Geary RS, Monteith DK, Matson J, Truong L, Fitchett J, Levin AA (2004) Tissue disposition of 2′-O-(2-methoxy) ethyl modified antisense oligonucleotides in monkeys. J Pharm Sci 93(1):48–59. https://doi.org/10.1002/jps.10473

    CAS  CrossRef  PubMed  Google Scholar 

  16. Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri K, Zhang X, Gao M, Liu J, Indrakanti R, Schofield S, Kretschmer P, Brown CR, Gupta S, Willoughby JLS, Boshar JA, Jadhav V, Charisse K, Zimmermann T, Fitzgerald K, Manoharan M, Rajeev KG, Akinc A, Hutabarat R, Maier MA (2017) Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res 45(19):10969–10977. https://doi.org/10.1093/nar/gkx818

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Baek M-S, Yu RZ, Gaus H, Grundy JS, Geary RS (2010) In vitro metabolic stabilities and metabolism of 2′-O-(methoxyethyl) partially modified Phosphorothioate antisense oligonucleotides in preincubated rat or human whole liver homogenates. Oligonucleotides 20(6):309–316. https://doi.org/10.1089/oli.2010.0252

    CAS  CrossRef  PubMed  Google Scholar 

  18. Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV (2015) Long-term stabilization of maleimide–thiol conjugates. Bioconjug Chem 26(1):145–152. https://doi.org/10.1021/bc5005262

    CAS  CrossRef  PubMed  Google Scholar 

  19. Wei C, Zhang G, Clark T, Barletta F, Tumey LN, Rago B, Hansel S, Han X (2016) Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Anal Chem 88(9):4979–4986. https://doi.org/10.1021/acs.analchem.6b00976

    CAS  CrossRef  PubMed  Google Scholar 

  20. Brinckerhoff LH, Kalashnikov VV, Thompson LW, Yamshchikov GV, Pierce RA, Galavotti HS, Engelhard VH, Slingluff CL Jr (1999) Terminal modifications inhibit proteolytic degradation of an immunogenic mart-127–35 peptide: implications for peptide vaccines. Int J Cancer 83(3):326–334. https://doi.org/10.1002/(sici)1097-0215(19991029)83:3<326::Aid-ijc7>3.0.Co;2-x

    CAS  CrossRef  PubMed  Google Scholar 

  21. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, Zimmermann T, Koteliansky V, Manoharan M, Stoffel M (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25(10):1149–1157. http://www.nature.com/nbt/journal/v25/n10/suppinfo/nbt1339_S1.html

    CAS  CrossRef  Google Scholar 

  22. Biscans A, Coles A, Haraszti R, Echeverria D, Hassler M, Osborn M, Khvorova A (2019) Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res 47(3):1082–1096. https://doi.org/10.1093/nar/gky1239

    CAS  CrossRef  PubMed  Google Scholar 

  23. Nowakowski GS, Dooner MS, Valinski HM, Mihaliak AM, Quesenberry PJ, Becker PS (2004) A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22(6):1030–1038. https://doi.org/10.1634/stemcells.22-6-1030

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by the NCCR RNA and Disease of the Swiss National Science Foundation and by ETH Zürich to J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schümperli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Halloy, F., Brönnimann, P., Hall, J., Schümperli, D. (2022). Analysis of Oligonucleotide Biodistribution and Metabolization in Experimental Animals. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols