Skip to main content

Probing the Interactions of Splicing Regulatory Small Molecules and Proteins with U1 snRNP Using NMR Spectroscopy

  • 432 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2537)

Abstract

Alternative RNA splicing is an essential part of gene expression that not only increases the protein diversity of metazoan but also provides an additional layer of gene expression regulation. The U1 small ribonucleoparticle (U1 snRNP) plays an essential role in seeding spliceosome assembly and its binding on weak 5′-splice sites is regulated by transient interactions with splicing factors. Recent progress in allele specific splicing correction has shown the therapeutic potential offered by small molecule splicing modifiers that specifically promotes the recruitment of U1 snRNP to modulate alternative splicing and gene expression. Here, we described a method to reconstitute U1 snRNP in vitro and to study labile interactions with protein or synthetic splicing factors using solution state NMR spectroscopy. This approach allowed us to validate direct interactions between splicing regulators and U1 snRNP and could also be useful for the screening of small molecules acting on splicing regulation.

Key words

  • Splicing regulation
  • U1 snRNP
  • Splicing factors
  • Small molecule splicing modifier
  • NMR spectroscopy

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2521-7_15
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2521-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    CAS  CrossRef  Google Scholar 

  2. Mount SM, Pettersson I, Hinterberger M et al (1983) The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell 33:509–518

    CAS  CrossRef  Google Scholar 

  3. Roca X, Krainer AR, Eperon IC (2013) Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes Dev 27:129–144

    CAS  CrossRef  Google Scholar 

  4. Cho S, Hoang A, Sinha R et al (2011) Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci U S A 108:8233–8238

    CAS  CrossRef  Google Scholar 

  5. Jutzi D, Campagne S, Schmidt R et al (2020) Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nat Commun 11:6341

    CAS  CrossRef  Google Scholar 

  6. Mourao A, Bonnal S, Soni K et al (2016) Structural basis for the recognition of spliceosomal SmN/B/B' proteins by the RBM5 OCRE domain in splicing regulation. Elife 5:e14707

    CrossRef  Google Scholar 

  7. Sharma S, Maris C, Allain FH et al (2011) U1 snRNA directly interacts with polypyrimidine tract-binding protein during splicing repression. Mol Cell 41:579–588

    CAS  CrossRef  Google Scholar 

  8. Staknis D, Reed R (1994) SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol Cell Biol 14:7670–7682

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Subramania S, Gagné L, Campagne S et al (2019) SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing. Nucleic Acids Res 47:4181–4197

    CAS  CrossRef  Google Scholar 

  10. Naryshkin NA, Weetall M, Dakka A et al (2014) SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345:688–693

    CAS  CrossRef  Google Scholar 

  11. Sivaramakrishnan M, McCarthy KD, Campagne S et al (2017) Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun 8:1476

    CrossRef  Google Scholar 

  12. Campagne S, Boigner S, Rudisser S et al (2020) Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 15:1191–1198

    CrossRef  Google Scholar 

  13. Palacino J, Swalley SE, Song C et al (2015) SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol 11:511–517

    CAS  CrossRef  Google Scholar 

  14. Garcia-Lopez A, Tessaro F, Jonker HRA et al (2018) Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nat Commun 9:2032

    CrossRef  Google Scholar 

  15. Chen JL, Zhang P, Abe M et al (2020) Design, optimization, and study of small molecules that target tau pre-mRNA and affect splicing. J Am Chem Soc 142:8706–8727

    CrossRef  Google Scholar 

  16. Stark H, Dube P, Luhrmann R et al (2001) Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409:539–542

    CAS  CrossRef  Google Scholar 

  17. Pomeranz Krummel DA, Oubridge C, Leung AK et al (2009) Crystal structure of human spliceosomal U1 snRNP at 5.5 a resolution. Nature 458:475–480

    CAS  CrossRef  Google Scholar 

  18. Weber G, Trowitzsch S, Kastner B et al (2010) Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J 29:4172–4184

    CAS  CrossRef  Google Scholar 

  19. Will CL, Rumpler S, Klein Gunnewiek J et al (1996) In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes. Nucleic Acids Res 24:4614–4123

    CAS  CrossRef  Google Scholar 

  20. Muto Y, Krummel DA, Kambach C et al (2001) Reconstitution of the spliceosomal U1 snRNP from all recombinant subunits and its characterisation by ionspray Q-tof mass-spectrometry. Nucleic Acids Res Suppl 1:275–276

    CrossRef  Google Scholar 

  21. Raker VA, Plessel G, Luhrmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15:2256–2269

    CAS  CrossRef  Google Scholar 

  22. Will CL, Luhrmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290–301

    CAS  CrossRef  Google Scholar 

  23. Dorn G, Leitner A, Boudet J et al (2017) Structural modeling of protein-RNA complexes using crosslinking of segmentally isotope-labeled RNA and MS/MS. Nat Methods 14:487–490

    CAS  CrossRef  Google Scholar 

  24. Campagne S, de Vries T, Malard F et al (2021) An in-vitro reconstituted U1 snRNP allows the study of the disordered regions of the particle and the interactions with proteins and ligands. Nucleic Acids Res 49:gkab135. https://doi.org/10.1093/nar/gkab135

    CAS  CrossRef  Google Scholar 

  25. Tropea JE, Cherry S, Waugh DS (2009) Expression and purification of soluble His(6)-tagged TEV protease. Methods Mol Biol 498:297–307

    CAS  CrossRef  Google Scholar 

  26. Price SR, Ito N, Oubridge C et al (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249:398–408

    CAS  CrossRef  Google Scholar 

  27. Cathala G, Brunel C (1990) Use of n-butanol for efficient recovery of minute amounts of small RNA fragments and branched nucleotides from dilute solutions. Nucleic Acids Res 18:201

    CAS  CrossRef  Google Scholar 

  28. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    CAS  CrossRef  Google Scholar 

  29. Duss O, Maris C, von Schroetter C et al (2010) A fast, efficient and sequence-independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage. Nucleic Acids Res 38:e188

    CrossRef  Google Scholar 

  30. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    CAS  CrossRef  Google Scholar 

  31. Rossler P, Mathieu D, Gossert AD (2020) Enabling NMR studies of high molecular weight systems without the need for Deuteration: the XL-ALSOFAST experiment with delayed decoupling. Angew Chem Int Ed Engl 59:19329–19337

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sébastien Campagne or Frédéric H. -T. Allain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Campagne, S., de Vries, T., Allain, F.H.T. (2022). Probing the Interactions of Splicing Regulatory Small Molecules and Proteins with U1 snRNP Using NMR Spectroscopy. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols