Skip to main content

Plant–Fungal Interactions: Laser Microdissection as a Tool to Study Cell Specificity

  • Protocol
  • First Online:
Plant Pathology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2536))

  • 1008 Accesses

Abstract

In the past 20 years, laser microdissection (LMD) technology has been widely applied to plant tissues, allowing to obtain new information on the role of different cell-type populations during plant development and interactions, including plant–pathogen interactions. The application of a LMD approach allowed verifying the response of plant and pathogen during the progression of the infection in different cell types, focusing both on gene expression in host plants and pathogens. Here, a protocol to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations is described in detail, from the biological material preparation to RNA extraction and gene expression analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emmert-Buck MR, Bonner RF, Smith PD et al (1996) Laser capture microdissection. Science 274:998–1001

    Article  CAS  Google Scholar 

  2. Balestrini R, Gomez-Ariza J, Lanfranco L et al (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant-Microbe Interact 20:1055–106210

    Article  CAS  Google Scholar 

  3. Hacquard S, Tisserant E, Brun A et al (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbial 15:1853–1869

    Article  CAS  Google Scholar 

  4. Fochi V, Chitarra W, Kohler A et al (2017) Fungal and plant gene expression in the Tulasnella calosporaSerapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol 213:365–379

    Article  CAS  Google Scholar 

  5. Fochi V, Falla N, Girlanda M et al (2017) Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae. Plant Sci 263:39–45

    Article  CAS  Google Scholar 

  6. Balestrini R, Fiorilli V (2020) Laser microdissection as a useful tool to study gene expression in plant and fungal partners in AM symbiosis. In: Ferrol N, Lanfranco L (eds) Arbuscular mycorrhizal fungi: methods and protocols, series methods in molecular biology, protocol lab. Springer, Heidelberg

    Google Scholar 

  7. Santi S, Grisan S, Pierasco A et al (2013) Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant Cell Environ 36:343–355

    Article  CAS  Google Scholar 

  8. Rossi M, Pesando M, Vallino M et al (2018) Application of laser microdissection to study phytoplasma site-specific gene expression in the model plant Arabidopsis thaliana. Microbiol Res 217:60–68

    Article  CAS  Google Scholar 

  9. Tang W, Coughlan S, Crane E et al (2006) The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Mol Plant-Microbe Interact 19:1240–1250

    Article  CAS  Google Scholar 

  10. Hacquard S, Delaruelle C, Legué V et al (2010) Laser capture microdissection of Uredinia formed by Melampsora larici-populina revealed a transcriptional switch between biotrophy and sporulation. Mol Plant-Microbe Interact 23:1275–1286

    Article  CAS  Google Scholar 

  11. Chandran D, Inada N, Hather G et al (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. PNAS 107:460–465

    Article  CAS  Google Scholar 

  12. Klug K, Hogekamp C, Specht A et al (2015) Spatial gene expression analysis in tomato hypocotyls suggests cysteine as key precursor of vascular sulfur accumulation implicated in Verticillium dahliae defense. Physiol Plant 153:253–268

    Article  CAS  Google Scholar 

  13. Honaas LA, Wafula EK, Yang Z et al (2013) Functional genomics of a generalist parasitic plant: laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression. BMC Plant Biol 13:9

    Article  CAS  Google Scholar 

  14. Coker TL, Cevik V, Beynon JL et al (2015) Spatial dissection of the Arabidopsis thaliana transcriptional response to downy mildew using fluorescence activated cell sorting. Front Plant Sci 6:527

    Article  Google Scholar 

  15. Podgorny OV, Lazarev VN (2017) Laser microdissection: a promising tool for exploring microorganisms and their interactions with hosts. J Microbiol Methods 138:82–92

    Article  Google Scholar 

  16. Inada N, Wildermuth MC (2005) Novel tissue preparation method and cell-specific marker for laser microdissection of Arabidopsis mature leaf. Planta 221:9–16

    Article  CAS  Google Scholar 

  17. Luchi N, Capretti P, Fossdal CG et al (2012) Laser microdissection on Norway spruce bark tissue: a suitable protocol for subsequent real-time reverse transcription–polymerase chain reaction (RT-PCR) analysis. Plant Biosyst 146:92–98

    Article  Google Scholar 

  18. Falter C, Ellinger D, von Hülsen B et al (2015) Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis. Front Plant Sci 6:194

    Article  Google Scholar 

  19. Tremblay A, Li S, Scheffler BE et al (2008) Laser capture microdissection and expressed sequence tag analysis of Phakopsora pachyrhizi uredinia. Physiol Mol Plant Pathol 73:163–174

    Article  CAS  Google Scholar 

  20. Tremblay A, Hosseini P, Li S et al (2012) Identification of genes expressed by Phakopsora pachyrhizi, the pathogen causing soybean rust, at a late stage of infection of susceptible soybean leaves. Plant Pathol 61:773–786

    Article  CAS  Google Scholar 

  21. Chandran D, Hather G, Wildermuth MC (2011) Global expression profiling of RNA from laser microdissected cells at fungal–plant interaction sites. In: McDowell J (ed) Plant immunity, methods in molecular biology (methods and protocols), vol 712. Humana Press

    Google Scholar 

  22. Kerk NM, Ceserani T, Tausta SL et al (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132:27–35

    Article  CAS  Google Scholar 

  23. Cai S, Lashbrook CC (2006) Laser capture microdissection of plant cells from tape transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. Plant J 48:628–637

    Article  CAS  Google Scholar 

  24. Lenzi L, Caruso C, Bianchedi PL et al (2016) Laser microdissection of grapevine leaves reveals site-specific regulation of transcriptional response to Plasmopara viticola. Plant Cell Physiol 57:69–81

    Article  CAS  Google Scholar 

  25. Balestrini R, Ghignone S, Quiroga G et al (2020) Long-term impact of chemical and alternative fungicides applied to Grapevine cv Nebbiolo on Berry Transcriptome. Int J Mol Sci 21:6067

    Article  CAS  Google Scholar 

  26. Gomez SK, Harrison MJ (2009) Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. Pest Man Sci 65:504–511

    Article  CAS  Google Scholar 

  27. Gaude N, Bortfeld S, Duensing N et al (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    Article  CAS  Google Scholar 

  28. Nakazono M, Qiu F, Borsuk LA et al (2003) Laser capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissue of maize. Plant Cell 15:583–596

    Article  CAS  Google Scholar 

  29. Balestrini R, Gómez-Ariza J, Klink VP et al (2009) Application of laser microdissection to plant pathogenic and symbiotic interactions. J Plant Interact 4:81–92

    Article  CAS  Google Scholar 

  30. Hogekamp C, Arndt D, Pareira PA et al (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043

    Article  CAS  Google Scholar 

  31. Giovannetti M, Balestrini R, Volpe V et al (2012) Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. BMC Plant Biol 12:186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Balestrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balestrini, R., Sillo, F. (2022). Plant–Fungal Interactions: Laser Microdissection as a Tool to Study Cell Specificity. In: Luchi, N. (eds) Plant Pathology. Methods in Molecular Biology, vol 2536. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2517-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2517-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2516-3

  • Online ISBN: 978-1-0716-2517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics