Skip to main content

Capillary Electrophoresis–Mass Spectrometry (CE-MS) by Sheath–Flow Nanospray Interface and Its Use in Biopharmaceutical Applications

  • Protocol
  • First Online:
Capillary Electrophoresis-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2531))

Abstract

Both capillary electrophoresis (CE) and mass spectrometry (MS) technologies are powerful analytical tools that have been used extensively in the characterization of biologics in the biopharmaceutical industry. The direct coupling of CE with MS is an attractive approach, in that the high separation capability of CE and the ultrasensitive detection and accurate identification performance of MS can be combined to provide a powerful system for the analysis of complex analytes. In this chapter, we discuss the detailed procedure of carrying out CE-MS analysis using a nano sheath–flow interface and its applications including intact mass analysis of monoclonal antibodies and fusion proteins, and a biotransformation study of two Fc-FGF21 molecules in a single-dose pharmacokinetic mice study. Optimization processes, including the finetuning of CE conditions and MS parameters, are illustrated in this chapter, with focuses on method robustness and assay reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136

    Article  CAS  PubMed  Google Scholar 

  2. Grilo AL, Mantalaris A (2019) The increasingly human and profitable monoclonal antibody market. Trends Biotechnol 37:9–16

    Article  CAS  PubMed  Google Scholar 

  3. Cruz E, Kayser V (2019) Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics 13:33–51

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Awwad S, Angkawinitwong U (2018) Overview of antibody drug delivery. Pharmaceutics 10:83

    Article  CAS  PubMed Central  Google Scholar 

  5. Audagnotto M, Dal Peraro M (2017) Protein post-translational modifications: in silico prediction tools and molecular modeling. Comput Struct Biotechnol J 15:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han M, Rock BM, Pearson JT, Rock DA (2016) Intact mass analysis of monoclonal antibodies by capillary electrophoresis-mass spectrometry. J Chromatogr B 1011:24–32

    Article  CAS  Google Scholar 

  7. Han M, Pearson JT, Wang Y, Winters D, Soto M, Rock DA, Rock BM (2017) Immunoaffinity capture coupled with capillary electrophoresis—mass spectrometry to study therapeutic protein stability in vivo. Anal Biochem 539:118–126

    Article  CAS  PubMed  Google Scholar 

  8. Creamer JS, Oborny NJ, Lunte SM (2014) Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. Anal Methods 6:5427–5449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao SS, Chen DD (2014) Applications of capillary electrophoresis in characterizing recombinant protein therapeutics. Electrophoresis 35:96–108

    Article  CAS  PubMed  Google Scholar 

  10. Sastre Torano J, Ramautar R, de Jong G (2019) Advances in capillary electrophoresis for the life sciences. J Chromatogr B 1118–1119:116–136

    Article  CAS  Google Scholar 

  11. Han M, Phan D, Nightlinger N, Taylor L, Jankhah S, Woodruff B, Yates Z, Freeman S, Guo A, Balland A, Pettit D (2006) Optimization of CE-SDS method for antibody separation based on multi-users experimental practices. Chromatographia 64:1–8

    Article  CAS  Google Scholar 

  12. Salas-Solano O, Tomlinson B, Du S, Parker M, Strahan A, Ma S (2006) Optimization and validation of a quantitative capillary electrophoresis sodium dodecyl sulfate method for quality control and stability monitoring of monoclonal antibodies. Anal Chem 78:6583–6594

    Article  CAS  PubMed  Google Scholar 

  13. Han M, Guo A, Jochheim C, Zhang Y, Martinez T, Kodama P, Pettit D, Balland A (2007) Analysis of glycosylated type II Interleukin-1 receptor (IL-1R) by imaged capillary isoelectric focusing (i-cIEF). Chromatographia 66:969–976

    Article  CAS  Google Scholar 

  14. Anderson CL, Wang Y, Rustandi RR (2012) Applications of imaged capillary isoelectric focussing technique in development of biopharmaceutical glycoprotein-based products. Electrophoresis 33:1538–1544

    Article  CAS  PubMed  Google Scholar 

  15. Gahoual R, Beck A, Leize-Wagner E, Francois YN (2016) Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B 1032:61–78

    Article  CAS  Google Scholar 

  16. Lechner A, Giorgetti J, Gahoual R, Beck A, Leize-Wagner E, Francois YN (2019) Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J Chromatogr B 1122–1123:1–17

    Article  CAS  Google Scholar 

  17. Kahle J, Watzig H (2018) Determination of protein charge variants with (imaged) capillary isoelectric focusing and capillary zone electrophoresis. Electrophoresis 39:2492–2511

    Article  CAS  PubMed  Google Scholar 

  18. Hamm M, Wang Y, Rustandi RR (2013) Characterization of N-linked glycosylation in a monoclonal antibody produced in NS0 cells using capillary electrophoresis with laser-induced fluorescence detection. Pharmaceuticals (Basel) 6:393–406

    Article  CAS  Google Scholar 

  19. Larsen MR, Trelle MB, Thingholm TE, Jensen ON (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. BioTechniques 40:790–798

    Article  CAS  PubMed  Google Scholar 

  20. Doll S, Burlingame AL (2015) Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem Biol 10:63–71

    Article  CAS  PubMed  Google Scholar 

  21. Chait BT, Cadene M, Olinares PD, Rout MP, Shi Y (2016) Revealing higher order protein structure using mass spectrometry. J Am Soc Mass Spectrom 27:952–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu CC, Zhang J, Dovichi NJ (2005) A sheath-flow nanospray interface for capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 19:187–192

    Article  CAS  PubMed  Google Scholar 

  23. Gahoual R, Busnel J-M, Wolff P, François YN, Leize-Wagner E (2014) Novel sheathless CE-MS interface as an original and powerful infusion platform for nanoESI study: from intact proteins to high molecular mass noncovalent complexes. Anal Bioanal Chem 406:1029–1038

    Article  CAS  PubMed  Google Scholar 

  24. Moini M (2007) Simplifying CE−MS operation. 2. Interfacing low-flow separation techniques to mass spectrometry using a porous tip. Anal Chem 79:4241–4246

    Article  CAS  PubMed  Google Scholar 

  25. Sun L, Zhu G, Zhang Z, Mou S, Dovichi NJ (2015) Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis–mass spectrometry analysis of complex proteome digests. J Proteome Res 14:2312–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith RD, Barinaga CJ, Udseth HR (1988) Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. Anal Chem 60:1948–1952

    Article  CAS  Google Scholar 

  27. Lindenburg PW, Haselberg R, Rozing G, Ramautar R (2015) Developments in interfacing designs for CE–MS: towards enabling tools for proteomics and metabolomics. Chromatographia 78:367–377

    Article  CAS  Google Scholar 

  28. Zhu G, Sun L, Yan X, Dovichi NJ (2014) Stable, reproducible, and automated capillary zone electrophoresis-tandem mass spectrometry system with an electrokinetically pumped sheath-flow nanospray interface. Anal Chim Acta 810:94–98

    Article  CAS  PubMed  Google Scholar 

  29. Schiavone NM, Sarver SA, Sun L, Wojcik R, Dovichi NJ (2015) High speed capillary zone electrophoresis-mass spectrometry via an electrokinetically pumped sheath flow interface for rapid analysis of amino acids and a protein digest. J Chromatogr B 991:53–58

    Article  CAS  Google Scholar 

  30. Sun L, Hebert AS, Yan X, Zhao Y, Westphall MS, Rush MJ, Zhu G, Champion MM, Coon JJ, Dovichi NJ (2014) Over 10,000 peptide identifications from the HeLa proteome by using single-shot capillary zone electrophoresis combined with tandem mass spectrometry. Angew Chem Int Ed Engl 53:13931–13933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stepanova S, Kasicka V (2016) Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 39:198–211

    Article  CAS  PubMed  Google Scholar 

  32. Kasicka V (2018) Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 39:209–234

    Article  CAS  PubMed  Google Scholar 

  33. Dai J, Lamp J, Xia Q, Zhang Y (2018) Capillary isoelectric focusing-mass spectrometry method for the separation and online characterization of intact monoclonal antibody charge variants. Anal Chem 90:2246–2254

    Article  CAS  PubMed  Google Scholar 

  34. Zhu G, Sun L, Heidbrink-Thompson J, Kuntumalla S, Lin HY, Larkin CJ, McGivney JBT, Dovichi NJ (2016) Capillary zone electrophoresis tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies. Electrophoresis 37:616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao Y, Riley NM, Sun L, Hebert AS, Yan X, Westphall MS, Rush MJ, Zhu G, Champion MM, Mba Medie F, Champion PA, Coon JJ, Dovichi NJ (2015) Coupling capillary zone electrophoresis with electron transfer dissociation and activated ion electron transfer dissociation for top-down proteomics. Anal Chem 87:5422–5429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han M, Rock BM, Pearson JT, Wang Y, Rock DA (2016) Therapeutic monoclonal antibody intact mass analysis by capillary electrophoresis–mass spectrometry. In: Xia JQ, Zhang L (eds) Capillary electrophoresis-mass spectrometry: therapeutic protein characterization. Springer International, Cham, pp 13–34

    Chapter  Google Scholar 

  37. Zell M, Husser C, Staack RF, Jordan G, Richter WF, Schadt S, Pahler A (2016) In vivo biotransformation of the fusion protein Tetranectin-apolipoprotein A1 analyzed by ligand-binding mass spectrometry combined with quantitation by ELISA. Anal Chem 88:11670–11677

    Article  CAS  PubMed  Google Scholar 

  38. Kang L, Camacho RC, Li W, D'Aquino K, You S, Chuo V, Weng N, Jian W (2017) Simultaneous catabolite identification and quantitation of large therapeutic protein at the intact level by Immunoaffinity capture liquid chromatography-high-resolution mass spectrometry. Anal Chem 89:6065–6075

    Article  CAS  PubMed  Google Scholar 

  39. Kang L, Weng N, Jian W (2019) LC-MS bioanalysis of intact proteins and peptides. Biomed Chromatogr 34:e4633

    PubMed  Google Scholar 

  40. Tibbitts J, Canter D, Graff R, Smith A, Khawli LA (2016) Key factors influencing ADME properties of therapeutic proteins: a need for ADME characterization in drug discovery and development. mAbs 8:229–245

    Article  CAS  PubMed  Google Scholar 

  41. Tumey LN, Rago B, Han X (2015) In vivo biotransformations of antibody-drug conjugates. Bioanalysis 7:1649–1664

    Article  CAS  PubMed  Google Scholar 

  42. Hager T, Spahr C, Xu J, Salimi-Moosavi H, Hall M (2013) Differential enzyme-linked immunosorbent assay and ligand-binding mass spectrometry for analysis of biotransformation of protein therapeutics: application to various FGF21 modalities. Anal Chem 85:2731–2738

    Article  CAS  PubMed  Google Scholar 

  43. Hecht R, Li Y-S, Sun J, Belouski E, Hall M, Hager T, Yie J, Wang W, Winters D, Smith S, Spahr C, Tam L-T, Shen Z, Stanislaus S, Chinookoswong N, Lau Y, Sickmier A, Michaels ML, Boone T, Véniant MM, Xu J (2012) Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One 7:e49345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank James QW Xia from CMP Scientific for critical review and technical support, Andy Gieschen from Agilent for technical support and discussions, and our Amgen colleagues, Marcus Soto for running the PK studies, Dwight Winters for purifying the constructs. Thanks to Brooke M. Rock, Josh T. Pearson, Yunan Wang, Chris Spahr, Steve Smith, and Todd Hager for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Han, M., Smith, R., Rock, D.A. (2022). Capillary Electrophoresis–Mass Spectrometry (CE-MS) by Sheath–Flow Nanospray Interface and Its Use in Biopharmaceutical Applications. In: Neusüß, C., Jooß, K. (eds) Capillary Electrophoresis-Mass Spectrometry . Methods in Molecular Biology, vol 2531. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2493-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2493-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2492-0

  • Online ISBN: 978-1-0716-2493-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics