Skip to main content

Protein Synthesis via Activated Cysteine-Directed Protein Ligation

  • Protocol
  • First Online:
Chemical Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2530))

Abstract

Proteins with a functionalized C-terminus are critical to synthesizing large proteins via expressed protein ligation. To overcome the limitations of currently available C-terminus functionalization strategies, we established an approach based on a small molecule cyanylating reagent that chemically activates a cysteine in a recombinant protein at its N-side amide for undergoing nucleophilic acyl substitution with amines. We demonstrated the versatility of this approach by successfully synthesizing RNAse H with its RNA hydrolyzing activity restored and in vitro nucleosome build with a C-terminal posttranslational modified histone H2A. This technique will expand the landscape of protein chemical synthesis and its application in new research fields significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779. https://doi.org/10.1126/science.7973629

    Article  CAS  PubMed  Google Scholar 

  2. Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu L (2011) Protein chemical synthesis by ligation of peptide hydrazides. Angew Chem Int Ed Engl 50(33):7645–7649. https://doi.org/10.1002/anie.201100996

    Article  CAS  PubMed  Google Scholar 

  3. Flood DT, Hintzen JCJ, Bird MJ, Cistrone PA, Chen JS, Dawson PE (2018) Leveraging the Knorr Pyrazole synthesis for the facile generation of thioester surrogates for use in native chemical ligation. Angew Chem Int Ed Engl 57(36):11634–11639. https://doi.org/10.1002/anie.201805191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95(12):6705–6710. https://doi.org/10.1073/pnas.95.12.6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dann GP, Liszczak GP, Bagert JD, Muller MM, Nguyen UTT, Wojcik F, Brown ZZ, Bos J, Panchenko T, Pihl R, Pollock SB, Diehl KL, Allis CD, Muir TW (2017) ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548(7669):607–611. https://doi.org/10.1038/nature23671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453(7196):812–816. https://doi.org/10.1038/nature06906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3(6):429–438. https://doi.org/10.1038/nmeth886

    Article  CAS  PubMed  Google Scholar 

  8. Rak A, Pylypenko O, Durek T, Watzke A, Kushnir S, Brunsveld L, Waldmann H, Goody RS, Alexandrov K (2003) Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302(5645):646–650. https://doi.org/10.1126/science.1087761

    Article  CAS  PubMed  Google Scholar 

  9. Schwarzer D, Cole PA (2005) Protein semisynthesis and expressed protein ligation: chasing a protein’s tail. Curr Opin Chem Biol 9(6):561–569. https://doi.org/10.1016/j.cbpa.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  10. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762):844–847. https://doi.org/10.1126/science.1124000

    Article  CAS  PubMed  Google Scholar 

  11. Amitai G, Callahan BP, Stanger MJ, Belfort G, Belfort M (2009) Modulation of intein activity by its neighboring extein substrates. Proc Natl Acad Sci U S A 106(27):11005–11010. https://doi.org/10.1073/pnas.0904366106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Evans TC Jr, Benner J, Xu MQ (1999) The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem 274(7):3923–3926. https://doi.org/10.1074/jbc.274.7.3923

    Article  CAS  PubMed  Google Scholar 

  13. Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwai H (2012) NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. J Mol Biol 421(1):85–99. https://doi.org/10.1016/j.jmb.2012.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stevens AJ, Sekar G, Shah NH, Mostafavi AZ, Cowburn D, Muir TW (2017) A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A 114(32):8538–8543. https://doi.org/10.1073/pnas.1701083114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vila-Perello M, Liu Z, Shah NH, Willis JA, Idoyaga J, Muir TW (2013) Streamlined expressed protein ligation using split inteins. J Am Chem Soc 135(1):286–292. https://doi.org/10.1021/ja309126m

    Article  CAS  PubMed  Google Scholar 

  16. Qiao Y, Yu G, Kratch KC, Wang XA, Wang WW, Leeuwon SZ, Xu S, Morse JS, Liu WR (2020) Expressed protein ligation without intein. J Am Chem Soc 142(15):7047–7054. https://doi.org/10.1021/jacs.0c00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nowotny M, Gaidamakov SA, Crouch RJ, Yang W (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121(7):1005–1016. https://doi.org/10.1016/j.cell.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  18. Wang WW, Zeng Y, Wu B, Deiters A, Liu WR (2016) A chemical biology approach to reveal Sirt6-targeted histone H3 sites in nucleosomes. ACS Chem Biol 11(7):1973–1981. https://doi.org/10.1021/acschembio.6b00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshe Ray Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, G., Qiao, Y., Blankenship, L.R., Liu, W.R. (2022). Protein Synthesis via Activated Cysteine-Directed Protein Ligation. In: Li, X. (eds) Chemical Protein Synthesis. Methods in Molecular Biology, vol 2530. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2489-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2489-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2488-3

  • Online ISBN: 978-1-0716-2489-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics