Skip to main content

Investigating Mitotic Inheritance of Histone Posttranslational Modifications by Triple pSILAC Coupled to Nascent Chromatin Capture

  • 432 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2529)

Abstract

Pulse stable isotope labeling with amino acids in cell culture (pSILAC) coupled to mass spectrometric analysis is a powerful tool to study propagation of histone post-translational modifications (PTMs). We describe the combination of triple pSILAC with pulse-chase labeling of newly replicated DNA by nascent chromatin capture (NCC). This technology tracks newly synthesized and recycled old histones, from deposition to transmission to daughter cells, unveiling principles of histone-based inheritance.

Key words

  • Histone
  • Posttranslational modifications
  • DNA replication
  • Mass spectrometry
  • SILAC
  • Nascent Chromatin Capture
  • Pulse-chase
  • Chromatin assembly

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2481-4_17
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2481-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Allshire RC, Madhani HD (2018) Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19(4):229–244

    CAS  CrossRef  Google Scholar 

  2. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    CAS  CrossRef  Google Scholar 

  3. Stillman B (2018) Histone modifications: insights into their influence on gene expression. Cell 175(1):6–9

    CAS  CrossRef  Google Scholar 

  4. Hansen JC, Nyborg JK, Luger K, Stargell LA (2010) Histone chaperones, histone acetylation, and the fluidity of the chromogenome. J Cell Physiol 224(2):289–299

    CAS  CrossRef  Google Scholar 

  5. Talbert PB, Henikoff S (2021) The Yin and Yang of histone marks in transcription. Annu Rev Genomics Hum Genet 22:147–170

    CrossRef  Google Scholar 

  6. Zhou CY, Johnson SL, Gamarra NI, Narlikar GJ (2016) Mechanisms of ATP-dependent chromatin remodeling motors. Annu Rev Biophys 45:153–181

    CAS  CrossRef  Google Scholar 

  7. Marchal C, Sima J, Gilbert DM (2019) Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 20(12):721–737

    CAS  CrossRef  Google Scholar 

  8. Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K, Yu C et al (2018) The Mcm2-Ctf4- Polalpha axis facilitates parental histone H3-H4 transfer to lagging strands. Mol Cell 72(1):140–51 e3

    CAS  CrossRef  Google Scholar 

  9. Petryk N, Dalby M, Wenger A, Stromme CB, Strandsby A, Andersson R et al (2018) MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361(6409):1389–1392

    CAS  CrossRef  Google Scholar 

  10. Yu C, Gan H, Serra-Cardona A, Zhang L, Gan S, Sharma S et al (2018) A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361(6409):1386–1389

    CAS  CrossRef  Google Scholar 

  11. Annunziato AT (2015) The fork in the road: histone partitioning during DNA replication. Genes (Basel) 6(2):353–371

    CAS  CrossRef  Google Scholar 

  12. Alabert C, Barth TK, Reveron-Gomez N, Sidoli S, Schmidt A, Jensen ON et al (2015) Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29(6):585–590

    CAS  CrossRef  Google Scholar 

  13. Scharf AN, Meier K, Seitz V, Kremmer E, Brehm A, Imhof A (2009) Monomethylation of lysine 20 on histone H4 facilitates chromatin maturation. Mol Cell Biol 29(1):57–67

    CAS  CrossRef  Google Scholar 

  14. Xu M, Wang W, Chen S, Zhu B (2011) A model for mitotic inheritance of histone lysine methylation. EMBO Rep 13(1):60–67

    CrossRef  Google Scholar 

  15. Stewart-Morgan KR, Petryk N, Groth A (2020) Chromatin replication and epigenetic cell memory. Nat Cell Biol 22(4):361–371

    CAS  CrossRef  Google Scholar 

  16. Alabert C, Loos C, Voelker-Albert M, Graziano S, Forne I, Reveron-Gomez N et al (2020) Domain model explains propagation dynamics and stability of histone H3K27 and H3K36 methylation landscapes. Cell Rep 30(4):1223–34 e8

    CAS  CrossRef  Google Scholar 

  17. Scharf AN, Barth TK, Imhof A (2009) Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 37(15):5032–5040

    CAS  CrossRef  Google Scholar 

  18. Sweet SMM, Li M, Thomas PM, Durbin KR, Kelleher NL (2010) Kinetics of re-establishing H3K79 methylation marks in global human chromatin. J Biol Chem 285(43):32778–32786

    CAS  CrossRef  Google Scholar 

  19. Marzluff WF, Koreski KP (2017) Birth and death of histone mRNAs. Trends Genet 33(10):745–759

    CAS  CrossRef  Google Scholar 

  20. Koberna K, Stanek D, Malinsky J, Eltsov M, Pliss A, Ctrnacta V et al (1999) Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma 108(5):325–335

    CAS  CrossRef  Google Scholar 

  21. Nakamura K, Kustatscher G, Alabert C, Hodl M, Forne I, Volker-Albert M et al (2021) Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol Cell 81(5):1084–99 e6

    CAS  CrossRef  Google Scholar 

  22. Saredi G, Huang H, Hammond CM, Alabert C, Bekker-Jensen S, Forne I et al (2016) H4K20me0 marks post-replicative chromatin and recruits the TONSL-MMS22L DNA repair complex. Nature 534(7609):714–718

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

C.A. is supported by CRUK-C57404/A21782 and ERC StG no. 715127. Work in the Groth lab was supported by the European Research Council (ERC StG no. 281765) and the Lundbeck Foundation (R198-2015- 269). Research at CPR is supported by the Novo Nordisk Foundation [NNF14CC0001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constance Alabert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Nakamura, K., Groth, A., Alabert, C. (2022). Investigating Mitotic Inheritance of Histone Posttranslational Modifications by Triple pSILAC Coupled to Nascent Chromatin Capture. In: Margueron, R., Holoch, D. (eds) Histone Methyltransferases. Methods in Molecular Biology, vol 2529. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2481-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2481-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2480-7

  • Online ISBN: 978-1-0716-2481-4

  • eBook Packages: Springer Protocols