Skip to main content

Identifying Specific Protein Interactors of Nucleosomes Carrying Methylated Histones Using Quantitative Mass Spectrometry

  • Protocol
  • First Online:
Histone Methyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2529))

Abstract

Chemical modification of histone proteins by methylation plays a central role in chromatin regulation by recruiting epigenetic “readers” via specialized binding domains. Depending on the degree of methylation, the exact modified amino acid, and the associated reader proteins histone methylations are involved in the regulation of all DNA-based processes, such as transcription, DNA replication, and DNA repair. Here we present methods to identify histone methylation readers using a mass spectrometry–linked nucleosome affinity purification approach. We provide detailed protocols for the generation of semisynthetic methylated histones, their assembly into biotinylated nucleosomes, and the identification of methylation-specific nucleosome-interacting proteins from nuclear extracts via nucleosome pull-downs and label-free quantitative proteomics. Due to their versatility, these protocols allow the identification of readers of various histone methylations, and can also be adapted to different cell types and tissues, and other types of modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  Google Scholar 

  2. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  Google Scholar 

  3. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143:470–484

    Article  CAS  Google Scholar 

  4. Makowski MM, Gräwe C, Foster BM, Nguyen NV, Bartke T, Vermeulen M (2018) Global profiling of protein-DNA and protein-nucleosome binding affinities using quantitative mass spectrometry. Nat Commun 9:1653

    Article  Google Scholar 

  5. Nakamura K, Saredi G, Becker JR, Foster BM, Nguyen NV, Beyer TE, Cesa LC, Faull PA, Lukauskas S, Frimurer T, Chapman JR, Bartke T, Groth A (2019) H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nat Cell Biol 21:311–318

    Article  CAS  Google Scholar 

  6. Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:3–19

    Article  CAS  Google Scholar 

  7. Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  CAS  Google Scholar 

  8. Musselman CA, Kutateladze TG (2019) Strategies for generating modified nucleosomes: applications within structural biology studies. ACS Chem Biol 14:579–586

    Article  CAS  Google Scholar 

  9. Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  CAS  Google Scholar 

  10. Wingfield PT (2017) N-terminal methionine processing. Curr Protoc Protein Sci 88:6.14.1–6.14.3

    Article  CAS  Google Scholar 

  11. Foster BM, Stolz P, Mulholland CB, Montoya A, Kramer H, Bultmann S, Bartke T (2018) Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin. Mol Cell 72:739–752.e9

    Article  CAS  Google Scholar 

  12. Tolbert TJ, Wong CH (2002) New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. Angew Chem Int Ed Engl 41:2171–2174

    Article  CAS  Google Scholar 

  13. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96:10068–10073

    Article  CAS  Google Scholar 

  14. Chen Z, Grzybowski AT, Ruthenburg AJ (2014) Traceless semisynthesis of a set of histone 3 species bearing specific lysine methylation marks. Chembiochem 15:2071–2075

    Article  CAS  Google Scholar 

  15. Guidotti N, Lechner CC, Bachmann AL, Fierz B (2019) A modular ligation strategy for asymmetric bivalent nucleosomes trimethylated at K36 and K27. Chembiochem 20:1124–1128

    Article  CAS  Google Scholar 

  16. Krauskopf K, Lang K (2020) Increasing the chemical space of proteins in living cells via genetic code expansion. Curr Opin Chem Biol 58:112–120

    Article  CAS  Google Scholar 

  17. Yang A, Ha S, Ahn J, Kim R, Kim S, Lee Y, Kim J, Söll D, Lee HY, Park HS (2016) A chemical biology route to site-specific authentic protein modifications. Science 354:623–626

    Article  CAS  Google Scholar 

  18. Wright TH, Bower BJ, Chalker JM, Bernardes GJ, Wiewiora R, Ng WL, Raj R, Faulkner S, Vallée MR, Phanumartwiwath A, Coleman OD, Thézénas ML, Khan M, Galan SR, Lercher L, Schombs MW, Gerstberger S, Palm-Espling ME, Baldwin AJ, Kessler BM, Claridge TD, Mohammed S, Davis BG (2016) Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity. Science 354:aag1465

    Article  Google Scholar 

  19. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–816

    Article  CAS  Google Scholar 

  20. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed Engl 46:9248–9252

    Article  CAS  Google Scholar 

  21. Song OK, Wang X, Waterborg JH, Sternglanz R (2003) An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J Biol Chem 278:38109–38112

    Article  CAS  Google Scholar 

  22. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42

    Article  CAS  Google Scholar 

  23. Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327:85–96

    Article  CAS  Google Scholar 

  24. Huynh VA, Robinson PJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957–968

    Article  CAS  Google Scholar 

  25. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  CAS  Google Scholar 

  26. Abmayr SM, Yao T, Parmely T, Workman JL (2006) Preparation of nuclear and cytoplasmic extracts from mammalian cells. Curr Protoc Mol Biol 75:12.1.1–12.1.10

    Article  Google Scholar 

  27. Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  Google Scholar 

  28. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156

    Article  CAS  Google Scholar 

  29. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  Google Scholar 

  30. Välikangas T, Suomi T, Elo LL (2018) A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief Bioinform 19:1–11

    PubMed  Google Scholar 

  31. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  Google Scholar 

  32. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  33. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ann-Christine König from the Helmholtz Zentrum München Research Unit Protein Science for help with the quantification of the label-free mass spectrometry data for the H3K4me3 and H3K9me3 dinucleosome pull-down experiments. The development of these protocols was supported by funding from the Human Frontiers Science Program Organization, the Medical Research Council (Grant No. MC_UP_1102/2), the European Research Council (ERC StG No. 309952), the Deutsche Forschungsgemeinschaft (DFG Project No. 431163844 and 213249687/SFB 1064), and the Helmholtz Gesellschaft to T.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Bartke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tvardovskiy, A., Nguyen, N., Bartke, T. (2022). Identifying Specific Protein Interactors of Nucleosomes Carrying Methylated Histones Using Quantitative Mass Spectrometry. In: Margueron, R., Holoch, D. (eds) Histone Methyltransferases. Methods in Molecular Biology, vol 2529. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2481-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2481-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2480-7

  • Online ISBN: 978-1-0716-2481-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics