Skip to main content

DNA–RNA Hybrids at Telomeres in Budding Yeast

  • Protocol
  • First Online:
R-Loops

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2528))

Abstract

It has recently been demonstrated that budding yeast telomeres are transcribed into TERRA, a long noncoding RNA. Due to the G-rich nature of the coding strand, TERRA has a tendency to form DNA–RNA hybrids and potentially R-loops, which in turn, promote repair at short telomeres. Here, we report two methods to detect DNA–RNA hybrids at yeast telomeres, namely, DRIP, which employs the S9.6 hybrid-recognizing antibody, and R-ChIP, which takes advantage of a catalytic dead form of RNase H1 (Rnh1-cd). We use cross-linked material for both protocols as we have found that this does not negatively affect recovered material, and furthermore allows the precipitation of other proteins from the identical cross-linked material. Although both methods are successful in terms of detecting DNA–RNA hybrids at telomeres, the R-ChIP method yields an approximately ten-fold increased enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crossley MP, Bocek M, Cimprich KA (2019) R-loops as cellular regulators and genomic threats. Mol Cell 73:398–411. https://doi.org/10.1016/j.molcel.2019.01.0242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lafuente-Barquero J, García-Rubio ML, Martin-Alonso MS et al (2020) Harmful DNA–RNA hybrids are formed in cis and in a rad51-independent manner. elife 9:1–19

    Article  Google Scholar 

  3. Wahba L, Gore SK, Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. elife 2:e00505

    Article  Google Scholar 

  4. Marnef A, Legube G (2021) R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 23:305–313. https://doi.org/10.1038/s41556-021-00663-4

    Article  CAS  PubMed  Google Scholar 

  5. Niehrs C, Luke B (2020) Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 21:167–178

    Article  CAS  Google Scholar 

  6. Cerritelli SM, El Hage A (2020) RNases H1 and H2: guardians of the stability of the nuclear genome when supply of dNTPs is limiting for DNA synthesis. Curr Genet 66:1073–1084. https://doi.org/10.1007/s00294-020-01086-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gaillard H, Aguilera A (2016) Transcription as a threat to genome integrity. Annu Rev Biochem 85:291–317

    Article  CAS  Google Scholar 

  8. Rippe K, Luke B (2015) TERRA and the state of the telomere. Nat Struct Mol Biol 22:853–858. https://doi.org/10.1038/nsmb.3078

    Article  CAS  PubMed  Google Scholar 

  9. Graf M, Bonetti D, Lockhart A et al (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170:72–85.e14

    Article  CAS  Google Scholar 

  10. Mischo HE, Gómez-González B, Grzechnik P et al (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41:21–32. https://doi.org/10.1016/j.molcel.2010.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chédin F, Hartono SR, Sanz LA et al (2021) Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J 40:e106394. https://doi.org/10.15252/embj.2020106394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wahba L, Costantino L, Tan FJ et al (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30:1327–1338. https://doi.org/10.1101/gad.280834.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zimmer AD, Koshland D (2016) Differential roles of the RNases H in preventing chromosome instability. Proc Natl Acad Sci U S A 113:12220–12225. https://doi.org/10.1073/pnas.1613448113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Chen JY, Zhang X et al (2017) R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol Cell 68:745–757.e5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Olga Vydzhak and Kristi Jensen for comments on the manuscript. BL’s lab is supported by the Heisenberg Program of the DFG-LU1709/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Luke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wagner, C.B., Luke, B. (2022). DNA–RNA Hybrids at Telomeres in Budding Yeast. In: Aguilera, A., Ruzov, A. (eds) R-Loops . Methods in Molecular Biology, vol 2528. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2477-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2477-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2476-0

  • Online ISBN: 978-1-0716-2477-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics