Skip to main content

Cell Adhesion and Biofilm Formation Analysis

  • Protocol
  • First Online:
Archaea

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2522))

Abstract

Cell adhesion to surfaces and ulterior biofilm formation are critical processes in microbial development since living in biofilms is the preferred way of life within microorganisms. These processes are known to influence not only microorganisms development in the environment, but also their participation in biotechnological processes and have been the focus of intense research that as a matter of fact, was mainly directed to the bacterial domain. Archaea also adhere to surfaces and have been shown forming biofilms, but studies performed until present did not exploit the diversity of methods probed to be useful along bacterial biofilm research.

An experimental setup is described here with the aim of stimulating archaeal biofilm research. It can be used for studying cell adhesion and biofilm formation under controlled flow conditions and allows performing in situ optical microscopy (phase contrast, fluorescence, or confocal) and/or spectroscopic techniques (UV-Vis, IR, or Raman) to determine structural and functional biofilm features and their evolution in time. Variants are described with specific aims as working in anaerobiosis and allow sampling of biological material along time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 120.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flemming H-C, Wuertz S (2019) Bacteria and archaea on earth and their abundance in biofilms. Nat Rev Microbiol 17:247–260. https://doi.org/10.1038/s41579-019-0158-9

    Article  CAS  PubMed  Google Scholar 

  2. Qin B, Fei C, Bridges AA, Mashruwala AA, Stone HA, Wingreen NS, Bassler BL (2020) Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 369:71–77. https://doi.org/10.1126/science.abb8501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  CAS  Google Scholar 

  4. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  Google Scholar 

  5. Busalmen JP, de Sanchez SR (2005) Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552). Appl Env Microbiol 71:6235–6240

    Article  CAS  Google Scholar 

  6. van Wolferen M, Orell A, Albers S-V (2018) Archaeal biofilm formation. Nat Rev Microbiol 16:699–713. https://doi.org/10.1038/s41579-018-0058-4

    Article  CAS  PubMed  Google Scholar 

  7. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  Google Scholar 

  8. Schrott GD, Ordoñez MV, Robuschi L, Busalmen JP (2014) Physiological stratification in electricity-producing biofilms of Geobacter sulfurreducens. ChemSusChem 7:598–603. https://doi.org/10.1002/cssc.201300605

    Article  CAS  PubMed  Google Scholar 

  9. Davey ME, O’Toole AG (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  Google Scholar 

  10. Di Meglio L, Busalmen JP, Pastore JI, Ballarín VL, Nercessian D (2014) Hyperhalophilic archaeal biofilms: growth kinetics, structure, and antagonistic interaction in continuous culture. Biofouling 30:237–245. https://doi.org/10.1080/08927014.2013.860136

    Article  PubMed  Google Scholar 

  11. Di Meglio LG, Busalmen JP, Pegoraro CN, Nercessian D (2020) Biofilms of Halobacterium salinarum as a tool for phenanthrene bioremediation. Biofouling 36:564–575. https://doi.org/10.1080/08927014.2020.1779709

    Article  CAS  PubMed  Google Scholar 

  12. Anton J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rossello-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    Article  CAS  Google Scholar 

  13. Busalmen JP, de Sánchez SR (2001) Adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and polarized thin films of gold. Appl Environ Microbiol 67:3188–3194. https://doi.org/10.1128/AEM.67.7.3188-3194.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rasband WS (1997) ImageJ. U. S. National Institutes of Health, Bethesda. https://imagej.nih.gov/ij/

    Google Scholar 

  15. Busalmen JP, de Sánchez SR (2003) Changes in the electrochemical interface as a result of the growth of Pseudomonas fluorescens biofilms on gold: changes in the electrochemical interface. Biotechnol Bioeng 82:619–624. https://doi.org/10.1002/bit.10600

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Kim H, Franklin RR, Bond DR (2011) Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living geobacter sulfurreducens biofilms. ChemPhysChem 12:2235–2241. https://doi.org/10.1002/cphc.201100246

    Article  CAS  PubMed  Google Scholar 

  17. Robuschi L, Tomba JP, Schrott GD, Bonanni PS, Desimone PM, Busalmen JP (2013) Spectroscopic slicing to reveal internal redox gradients in electricity-producing biofilms. Angew Chem Int Ed 52:925–928. https://doi.org/10.1002/anie.201205440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Débora Nercessian or Juan Pablo Busalmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nercessian, D., Busalmen, J.P. (2022). Cell Adhesion and Biofilm Formation Analysis. In: Ferreira-Cerca, S. (eds) Archaea. Methods in Molecular Biology, vol 2522. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2445-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2445-6_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2444-9

  • Online ISBN: 978-1-0716-2445-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics