Skip to main content

Methods to Analyze Motility in Eury- and Crenarchaea

  • Protocol
  • First Online:
Archaea

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2522))

  • 1107 Accesses

Abstract

Many archaea display swimming motility in liquid medium, which is empowered by the archaellum. Directional movement requires a functional archaellum and a sensing system, such as the chemotaxis system that is used by Euryarchaea. Two well-studied models are the euryarchaeon Haloferax volcanii and the crenarchaeon Sulfolobus acidocaldarius. In this chapter we describe two methods to analyze their swimming behavior and directional movement: (a) time-lapse microscopy under native temperatures and (b) spotting on semi-solid agar or gelrite plates. Whereas the first method allows for deep analysis of swimming behavior, the second method is suited for high throughput comparison of multiple strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jarrell KF, Albers S-V (2012) The archaellum: an old motility structure with a new name. Trends Microbiol 20:307–312. https://doi.org/10.1016/j.tim.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  2. Albers S-V, Jarrell KF (2018) The Archaellum: an update on the unique archaeal motility structure. Trends Microbiol 26:351–362. https://doi.org/10.1016/j.tim.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  3. Lassak K, Neiner T, Ghosh A et al (2012) Molecular analysis of the crenarchaeal flagellum. Mol Microbiol 83:110–124. https://doi.org/10.1111/j.1365-2958.2011.07916.x

    Article  CAS  PubMed  Google Scholar 

  4. Chaban B, Ng SY, Kanbe M et al (2007) Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol Microbiol 66:596–609. https://doi.org/10.1111/j.1365-2958.2007.05913.x

    Article  CAS  PubMed  Google Scholar 

  5. Kokoeva MV, Oesterhelt D (2000) BasT, a membrane-bound transducer protein for amino acid detection in Halobacterium salinarum. Mol Microbiol 35:647–656

    Article  CAS  Google Scholar 

  6. Kokoeva MV, Storch K-F, Klein C, Oesterhelt D (2002) A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. EMBO J 21:2312–2322. https://doi.org/10.1093/emboj/21.10.2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Storch KF, Rudolph J, Oesterhelt D (1999) Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. EMBO J 18:1146–1158. https://doi.org/10.1093/emboj/18.5.1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quax TEF, Albers S-V, Pfeiffer F (2018) Taxis in archaea. Emerg Top Life Sci 2:535–546. https://doi.org/10.1042/etls20180089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quax TEF, Altegoer F, Rossi F et al (2018) Structure and function of the archaeal response regulator CheY. Proc Natl Acad Sci U S A 115:E1259–E1268. https://doi.org/10.1073/pnas.1716661115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudolph J, Oesterhelt D (1996) Deletion analysis of the che operon in the archaeon Halobacterium salinarium. J Mol Biol 258:548–554. https://doi.org/10.1006/jmbi.1996.0267

    Article  CAS  PubMed  Google Scholar 

  11. Kinosita Y, Uchida N, Nakane D, Nishizaka T (2016) Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum. Nat Microbiol 1:16148. https://doi.org/10.1038/nmicrobiol.2016.148

    Article  CAS  PubMed  Google Scholar 

  12. Shahapure R, Driessen RP, Haurat MF et al (2014) The archaellum: a rotating type IV pilus. Mol Microbiol 91:716–723. https://doi.org/10.1111/mmi.12486

    Article  CAS  PubMed  Google Scholar 

  13. Ding Y, Lau Z, Logan SM et al (2016) Effects of growth conditions on archaellation and N-glycosylation in Methanococcus maripaludis. Microbiology 162:339–350

    Article  CAS  Google Scholar 

  14. Faguy DM, Jarrell KF, Kuzio J, Kalmokoff ML (1994) Molecular analysis of archaeal flagellins: similarity to the type IV pilin–transport superfamily widespread in bacteria. Can J Microbiol 40:67–71

    Article  CAS  Google Scholar 

  15. Mukhopadhyay B, Johnson EF, Wolfe RS (2000) A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii. Proc Natl Acad Sci U S A 97:11522–11527

    Article  CAS  Google Scholar 

  16. Hendrickson EL, Liu Y, Rosas-Sandoval G et al (2008) Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. J Bacteriol 190:2198–2205. https://doi.org/10.1128/JB.01805-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weidenbach K, Ehlers C, Kock J et al (2008) Insights into the NrpR regulon in Methanosarcina mazei Gö1. Arch Microbiol 190:319–332. https://doi.org/10.1007/s00203-008-0369-3

    Article  CAS  PubMed  Google Scholar 

  18. Lassak K, Peeters E, Wróbel S, Albers SV (2013) The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum. Mol Microbiol 88:125–139. https://doi.org/10.1111/mmi.12173

    Article  CAS  PubMed  Google Scholar 

  19. Esquivel RN, Pohlschroder M (2014) A conserved type IV pilin signal peptide H-domain is critical for the post-translational regulation of flagella-dependent motility. Mol Microbiol 93:494–504

    Article  CAS  Google Scholar 

  20. Henche A, Ghosh A, Yu X et al (2012) Structure and function of the adhesive type IV pilus of S ulfolobus acidocaldarius. Environ Microbiol 14:3188–3202

    Article  CAS  Google Scholar 

  21. Meyer BH, Peyfoon E, Dietrich C et al (2013) Agl16, a thermophilic glycosyltransferase mediating the last step of N-glycan biosynthesis in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bacteriol 195:2177–2186

    Article  CAS  Google Scholar 

  22. Jarrell KF, Ding Y, Meyer BH et al (2014) N-linked glycosylation in archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 78:304–341

    Article  Google Scholar 

  23. Bischof LF, Haurat MF, Albers S-V (2019) Two membrane-bound transcription factors regulate expression of various type-IV-pili surface structures in Sulfolobus acidocaldarius. PeerJ 7:e6459

    Article  Google Scholar 

  24. Hoffmann L, Anders K, Bischof LF et al (2019) Structure and interactions of the archaeal motility repression module ArnA-ArnB that modulates archaellum gene expression in Sulfolobus acidocaldarius. J Biol Chem 294(18):7460–7471

    Article  CAS  Google Scholar 

  25. Ye X, Vogt MS, Van Der Does C et al (2020) The phosphatase PP2A interacts with ArnA and ArnB to regulate the oligomeric state and the stability of the ArnA/B complex. Front Microbiol 11:1849. https://doi.org/10.3389/fmicb.2020.01849

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li L, Banerjee A, Bischof LF et al (2017) Wing phosphorylation is a major functional determinant of the Lrs14-type biofilm and motility regulator AbfR1 in Sulfolobus acidocaldarius. Mol Microbiol 105:777–793. https://doi.org/10.1111/mmi.13735

    Article  CAS  PubMed  Google Scholar 

  27. Reimann J, Lassak K, Khadouma S et al (2012) Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Mol Microbiol 86:24–36. https://doi.org/10.1111/j.1365-2958.2012.08186.x

    Article  CAS  PubMed  Google Scholar 

  28. Ye X, Van Der Does C, Albers S-V (2020) SaUspA, the universal stress protein of Sulfolobus acidocaldarius stimulates the activity of the PP2A phosphatase and is involved in growth at high salinity. Front Microbiol 11:598821

    Article  Google Scholar 

  29. Ding Y, Nash J, Berezuk A et al (2016) Identification of the first transcriptional activator of an archaellum operon in a euryarchaeon. Mol Microbiol 102:54–70. https://doi.org/10.1111/mmi.13444

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Kinosita Y, Rodriguez-Franco M et al (2019) Positioning of the motility machinery in halophilic archaea. MBio 10:e00377-19. https://doi.org/10.1128/mBio.00377-19

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li Z, Rodriguez-Franco M, Albers SV et al (2020) The switch complex ArlCDE connects the chemotaxis system and the archaellum. Mol Microbiol 114(3):468–479. https://doi.org/10.1111/mmi.14527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ducret A, Quardokus EM, Brun YV (2016) MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat Microbiol 1:16077. https://doi.org/10.1038/nmicrobiol.2016.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  34. Tittes C, Schwarzer S, Pfeiffer F et al (2021) Cellular and genomic properties of Haloferax gibbonsii LR2–5, the host of euryarchaeal virus HFTV1. Front Microbiol 12:625599. https://doi.org/10.1101/2020.10.26.354720

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schwarzer S, Rodriguez-Franco M, Oksanen HM, Quax TEF (2021) Growth phase dependent cell shape of Haloarcula. Microorganisms 9:1–14. https://doi.org/10.3390/microorganisms9020231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an Emmy Noether grant (411069969) from the DFG (German Research Foundation) to T.E.F.Q. M.P. received funding from the AL1206/4-3 Grant from the DFG. M.v.W. was supported by the Momentum grant 94933 from the Volkswagen Foundation. X.Y. received support from the Life? Grant Az 96727 from the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonja-Verena Albers or Tessa E. F. Quax .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Patro, M., van Wolferen, M., Ye, X., Albers, SV., Quax, T.E.F. (2022). Methods to Analyze Motility in Eury- and Crenarchaea. In: Ferreira-Cerca, S. (eds) Archaea. Methods in Molecular Biology, vol 2522. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2445-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2445-6_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2444-9

  • Online ISBN: 978-1-0716-2445-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics