Skip to main content

Proteomic Sample Preparation and Data Analysis in Line with the Archaeal Proteome Project

  • Protocol
  • First Online:
Archaea

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2522))

Abstract

Despite the ecological, evolutionary and economical significance of archaea, key aspects of their cell biology, metabolic pathways, and adaptations to a wide spectrum of environmental conditions, remain to be elucidated. Proteomics allows for the system-wide analysis of proteins, their changes in abundance between different conditions, as well as their post-translational modifications, providing detailed insights into the function of proteins and archaeal cell biology. In this chapter, we describe a sample preparation and mass spectrometric analysis workflow that has been designed for Haloferax volcanii but can be applied to a broad range of archaeal species. Furthermore, proteomics experiments provide a wealth of data that is invaluable to various disciplines. Therefore, we previously initiated the Archaeal Proteome Project (ArcPP), a community project that combines the analysis of multiple datasets with expert knowledge in various fields of archaeal research. The corresponding bioinformatic analysis, allowing for the integration of new proteomics data into the ArcPP, as well as the interactive exploration of ArcPP results is also presented here. In combination, these protocols facilitate an optimized, detailed and collaborative approach to archaeal proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358. https://doi.org/10.1038/nature21031

    Article  CAS  PubMed  Google Scholar 

  2. Baker BJ, De Anda V, Seitz KW et al (2020) Diversity, ecology and evolution of archaea. Nat Microbiol 5:887–900. https://doi.org/10.1038/s41564-020-0715-z

    Article  CAS  PubMed  Google Scholar 

  3. Gribaldo S, Brochier-Armanet C (2020) Evolutionary relationships between archaea and eukaryotes. Nat Ecol Evol 4:20–21. https://doi.org/10.1038/s41559-019-1073-1

    Article  PubMed  Google Scholar 

  4. Pohlschroder M, Schulze S (2019) Haloferax volcanii. Trends Microbiol 27:86–87. https://doi.org/10.1016/j.tim.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  5. Maupin-Furlow JA, Humbard MA, Kirkland PA (2012) Extreme challenges and advances in archaeal proteomics. Curr Opin Microbiol 15:351–356. https://doi.org/10.1016/j.mib.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soppa J (2011) Functional genomic and advanced genetic studies reveal novel insights into the metabolism, regulation, and biology of Haloferax volcanii. Archaea 2011:602408. https://doi.org/10.1155/2011/602408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Browne PD, Cadillo-Quiroz H (2013) Contribution of transcriptomics to systems-level understanding of methanogenic archaea. Archaea 2013:586369. https://doi.org/10.1155/2013/586369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato T, Atomi H (2011) Novel metabolic pathways in archaea. Curr Opin Microbiol 14:307–314. https://doi.org/10.1016/j.mib.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  9. Gelsinger DR, Dallon E, Reddy R et al (2020) Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res 48:5201–5216. https://doi.org/10.1093/nar/gkaa304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knüppel R, Trahan C, Kern M et al (2021) Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea. Nucleic Acids Res 49(3):1662–1687. https://doi.org/10.1093/nar/gkaa1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McMillan LJ, Hwang S, Farah RE et al (2018) Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses. Environ Microbiol 20:385–401. https://doi.org/10.1111/1462-2920.14014

    Article  CAS  PubMed  Google Scholar 

  12. Cerletti M, Paggi RA, Guevara CR et al (2015) Global role of the membrane protease LonB in archaea: potential protease targets revealed by quantitative proteome analysis of a lonB mutant in Haloferax volcanii. J Proteome 121:1–14. https://doi.org/10.1016/j.jprot.2015.03.016

    Article  CAS  Google Scholar 

  13. Jevtić Ž, Stoll B, Pfeiffer F et al (2019) The response of Haloferax volcanii to salt and temperature stress: a proteome study by label-free mass spectrometry. Proteomics 19:1800491. https://doi.org/10.1002/pmic.201800491

    Article  CAS  Google Scholar 

  14. Liao Y, Williams TJ, Ye J et al (2016) Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi. Sci Rep 6:37454. https://doi.org/10.1038/srep37454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ellen AF, Albers S-V, Driessen AJM (2010) Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles 14:87–98. https://doi.org/10.1007/s00792-009-0290-y

    Article  CAS  PubMed  Google Scholar 

  16. Cao J, Wang T, Wang Q et al (2019) Functional insights into protein acetylation in the Hyperthermophilic archaeon Sulfolobus islandicus*[S]. Mol Cell Proteomics 18:1572–1587. https://doi.org/10.1074/mcp.RA119.001312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schulze S, Pfeiffer F, Garcia BA, Pohlschroder M (2021) Comprehensive glycoproteomics shines new light on the complexity and extent of glycosylation in archaea. PLoS Biol 19:e3001277. https://doi.org/10.1371/journal.pbio.3001277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schulze S, Adams Z, Cerletti M et al (2020) The archaeal proteome project advances knowledge about archaeal cell biology through comprehensive proteomics. Nat Commun 11:3145. https://doi.org/10.1038/s41467-020-16784-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Omenn GS, Lane L, Overall CM et al (2019) Progress on identifying and characterizing the human proteome: 2019 metrics from the HUPO human proteome project. J Proteome Res 18:4098–4107. https://doi.org/10.1021/acs.jproteome.9b00434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kremer LPM, Leufken J, Oyunchimeg P et al (2016) Ursgal, universal python module combining common bottom-up proteomics tools for large-scale analysis. J Proteome Res 15:788–794. https://doi.org/10.1021/acs.jproteome.5b00860

    Article  CAS  PubMed  Google Scholar 

  21. Schulze S, Igiraneza AB, Kösters M et al (2021) Enhancing open modification searches via a combined approach facilitated by Ursgal. J Proteome Res 20(4):1986–1996. https://doi.org/10.1021/acs.jproteome.0c00799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kösters M, Leufken J, Schulze S et al (2018) pymzML v2.0: introducing a highly compressed and seekable gzip format. Bioinformatics 34:2513–2514. https://doi.org/10.1093/bioinformatics/bty046

    Article  CAS  PubMed  Google Scholar 

  23. Kong AT, Leprevost FV, Avtonomov DM et al (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat Methods 14:513–520. https://doi.org/10.1038/nmeth.4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5:5277. https://doi.org/10.1038/ncomms6277

    Article  CAS  PubMed  Google Scholar 

  25. The M, MacCoss MJ, Noble WS, Käll L (2016) Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J Am Soc Mass Spectrom 27:1719–1727. https://doi.org/10.1007/s13361-016-1460-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hulstaert N, Shofstahl J, Sachsenberg T et al (2020) ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion. J Proteome Res 19:537–542. https://doi.org/10.1021/acs.jproteome.9b00328

    Article  CAS  PubMed  Google Scholar 

  27. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467. https://doi.org/10.1093/bioinformatics/bth092

    Article  CAS  PubMed  Google Scholar 

  28. Halim MFA, Stoltzfus JD, Schulze S et al (2017) ArtA-dependent processing of a tat substrate containing a conserved tripartite structure that is not localized at the C terminus. J Bacteriol 199:e00802-16. https://doi.org/10.1128/JB.00802-16

    Article  PubMed  PubMed Central  Google Scholar 

  29. Costa MI, Cerletti M, Paggi RA et al (2018) Haloferax volcanii proteome response to deletion of a rhomboid protease gene. J Proteome Res 17:961–977. https://doi.org/10.1021/acs.jproteome.7b00530

    Article  CAS  PubMed  Google Scholar 

  30. Cerletti M, Paggi R, Troetschel C et al (2018) LonB protease is a novel regulator of Carotenogenesis controlling degradation of phytoene synthase in Haloferax volcanii. J Proteome Res 17:1158–1171. https://doi.org/10.1021/acs.jproteome.7b00809

    Article  CAS  PubMed  Google Scholar 

  31. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  32. Vaudel M, Barsnes H, Berven FS et al (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11:996–999. https://doi.org/10.1002/pmic.201000595

    Article  CAS  PubMed  Google Scholar 

  33. Röst HL, Sachsenberg T, Aiche S et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748. https://doi.org/10.1038/nmeth.3959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Continuous support and contributions to ArcPP by all ArcPP collaborators are greatly acknowledged. This work was supported by the National Science Foundation Grant 1817518.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Schulze or Mechthild Pohlschroder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schulze, S., Pohlschroder, M. (2022). Proteomic Sample Preparation and Data Analysis in Line with the Archaeal Proteome Project. In: Ferreira-Cerca, S. (eds) Archaea. Methods in Molecular Biology, vol 2522. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2445-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2445-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2444-9

  • Online ISBN: 978-1-0716-2445-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics