Skip to main content

Minicircles for CAR T Cell Production by Sleeping Beauty Transposition: A Technological Overview

  • Protocol
  • First Online:
Gene Therapy of Cancer

Abstract

Development and application of chimeric antigen receptor (CAR) T cell therapy has led to a breakthrough in the treatment of hematologic malignancies. In 2017, the FDA approved the first commercialized CD19-specific CAR T cell products for treatment of patients with B-cell malignancies. This success increased the desire to broaden the availability of CAR T cells to a larger patient cohort with hematological but also solid tumors. A critical factor of CAR T cell production is the stable and efficient delivery of the CAR transgene into T cells. This gene transfer is conventionally achieved by viral vectors. However, viral gene transfer is not conducive to affordable, scalable, and timely manufacturing of CAR T cell products. Thus, there is a necessity for developing alternative nonviral engineering platforms, which are more cost-effective, less complex to handle and which provide the scalability requirement for a globally available therapy.

One alternative method for engineering of T cells is the nonviral gene transfer by Sleeping Beauty (SB) transposition. Electroporation with two nucleic acids is sufficient to achieve stable CAR transfer into T cells. One of these vectors has to encode the gene of interest, which is the CAR , the second one a recombinase called SB transposase, the enzyme that catalyzes integration of the transgene into the host cell genome. As nucleic acids are easy to produce and handle SB gene transfer has the potential to provide scalability, cost-effectiveness, and feasibility for widespread use of CAR T cell therapies.

Nevertheless, the electroporation of two large-size plasmid vectors into T cells leads to high T cell toxicity and low gene transfer rates and has hindered the prevalent clinical application of the SB system. To circumvent these limitations, conventional plasmid vectors can be replaced by minimal-size vectors called minicircles (MC ). MCs are DNA vectors that lack the plasmid backbone, which is relevant for propagation in bacteria, but has no function in a human cell. Thus, their size is drastically reduced compared to conventional plasmids. It has been demonstrated that MC-mediated SB CAR transposition into T cells enhances their viability and gene transfer rate enabling the production of therapeutic doses of CAR T cells. These improvements make CAR SB transposition from MC vectors a promising alternative for engineering of clinical grade CAR T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay KA, Turtle CJ (2018) CD19-specific chimeric antigen receptor-modified (CAR)-T cell therapy for the treatment of chronic lymphocytic leukemia in the ibrutinib era. Immunotherapy 10(4):251–254

    Article  CAS  Google Scholar 

  2. Salter AI, Pont MJ, Riddell SR (2018) Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood 131(24):2621–2629

    Article  CAS  Google Scholar 

  3. Yakoub-Agha I, Chabannon C, Bader P et al (2020) Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 105(2):297–316

    Article  Google Scholar 

  4. Mestermann K, Giavridis T, Weber J et al (2019) The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med 11(499):eaau5907

    Article  Google Scholar 

  5. Andrea AE, Chiron A, Bessoles S et al (2020) Engineering next-generation CAR T cells for better toxicity management. Int J Mol Sci 21(22):8620

    Article  CAS  Google Scholar 

  6. Sommermeyer D, Hudecek M, Kosasih PL et al (2016) Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30(2):492–500

    Article  CAS  Google Scholar 

  7. Turtle CJ, Hanafi LA, Berger C et al (2016) CD19 CAR T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 126(6):2123–2138

    Article  Google Scholar 

  8. Parayath NN, Stephan SB, Koehne AL et al (2020) In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun 11(1):6080. https://doi.org/10.1038/s41467-020-19486-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramos CA, Savoldo B, Dotti G (2014) CD19-CAR trials. Cancer J 20(2):112–118

    Article  CAS  Google Scholar 

  10. Singh H, Manuri PR, Olivares S et al (2008) Redirecting specificity of T-cell populations for CD19 using the sleeping beauty system. Cancer Res 68(8):2961–2971

    Article  CAS  Google Scholar 

  11. Singh H, Figliola MJ, Dawson MJ et al (2013) Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using sleeping beauty system and artificial antigen presenting cells. PLoS One 8(5):e64138

    Article  CAS  Google Scholar 

  12. Field AC, Vink C, Gabriel R et al (2013) Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer. PLoS One 8(6):e68201

    Article  CAS  Google Scholar 

  13. Kobelt D, Schleef M, Schmeer M et al (2013) Performance of high quality minicircle DNA for in vitro and in vivo gene transfer. Mol Biotechnol 53(1):80–89

    Article  CAS  Google Scholar 

  14. Monjezi R, Miskey C, Gogishvili T et al (2017) Enhanced CAR T-cell engineering using non-viral sleeping beauty transposition from minicircle vectors. Leukemia 31(1):186–194

    Article  CAS  Google Scholar 

  15. Ivics Z, Hackett PB, Plasterk RH et al (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  CAS  Google Scholar 

  16. Izsvák Z, Ivics Z, Plasterk RH (2000) Sleeping beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302:93–102

    Article  Google Scholar 

  17. Mátés L, Chuah MK, Belay E et al (2009) Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753–761

    Article  Google Scholar 

  18. Huang X, Guo H, Kang J et al (2008) Sleeping beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther 16(3):580–589

    Article  CAS  Google Scholar 

  19. Peng PD, Cohen CJ, Yang S et al (2009) Efficient nonviral sleeping beauty transposon-based TCR gene transfer to peripheral blood lymphocytes confers antigen-specific antitumor reactivity. Gene Ther 8:1042–1049

    Article  Google Scholar 

  20. Izsvák Z, Hackett PB, Cooper LJ et al (2010) Translating sleeping beauty transposition into cellular therapies: victories and challenges. BioEssays 32(9):756–767

    Article  Google Scholar 

  21. Swierczek M, Izsvák Z, Ivics Z (2012) The sleeping beauty transposon system for clinical applications. Expert Opin Biol Ther 12(2):139–153

    Article  CAS  Google Scholar 

  22. Clauss J, Obenaus M, Miskey C et al (2018) Efficient non-viral T-cell engineering by sleeping beauty Minicircles diminishing DNA toxicity and miRNAs silencing the endogenous T-cell receptors. Hum Gene Ther 29:569–584

    Article  CAS  Google Scholar 

  23. Eberl L, Kristensen CS, Givskov M et al (1994) Analysis of the multimer resolution system encoded by the parCBA operon of broad-host-range plasmid RP4. Mol Microbiol 12(1):131–141

    Article  CAS  Google Scholar 

  24. Smith MC, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44(2):299–307

    Article  CAS  Google Scholar 

  25. Thomson JG, Ow DW (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44(10):465–476

    Article  CAS  Google Scholar 

  26. Jechlinger W, Azimpour Tabrizi T, Lubitz W et al (2004) Minicircle DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J Mol Microbiol Biotechnol 8:222–231

    PubMed  Google Scholar 

  27. Bigger BW, Tolmachov O, Collombet JM et al (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276(25):23018–23027

    Article  CAS  Google Scholar 

  28. Chen ZY, He CY, Ehrhardt A et al (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8(3):495–500

    Article  CAS  Google Scholar 

  29. Gossen JA, de Leeuw WJ, Molijn AC et al (1993) Plasmid rescue from transgenic mouse DNA using LacI repressor protein conjugated to magnetic beads. BioTechniques 14(4):624–629

    CAS  PubMed  Google Scholar 

  30. Mayrhofer P, Blaesen M, Schleef M et al (2008) Minicircle-DNA production by site specific recombination and protein–DNA interaction chromatography. J Gene Med 10:1253–1269

    Article  CAS  Google Scholar 

  31. Schmeer M, Schleef M (2014) Pharmaceutical grade large-scale plasmid DNA manufacturing process. Methods Mol Biol 1143:219–240

    Article  CAS  Google Scholar 

  32. Schleef M, Schirmbeck R, Reiser M et al (2015) Minicircle: next generation DNA vectors for vaccination. Methods Mol Biol 1317:327–339

    Article  Google Scholar 

  33. Chabot S, Orio J, Schmeer M et al (2013) Minicircle DNA electrotransfer for efficient tissue-targeted gene delivery. Gene Ther 20(1):62–68

    Article  CAS  Google Scholar 

  34. Hudecek M, Lupo-Stanghellini MT, Kosasih PL et al (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19(12):3153–3164

    Article  CAS  Google Scholar 

  35. Hudecek M, Sommermeyer D, Kosasih PL et al (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 3(2):125–135

    Article  CAS  Google Scholar 

  36. Brown CE, Wright CL, Naranjo A et al (2005) Biophotonic cytotoxicity assay for high-throughput screening of cytolytic killing. J Immunol Methods 297(1–2):39–52

    Article  CAS  Google Scholar 

  37. Sadelain M, Papapetrou EP, Bushman FD (2011) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12(1):51–58

    Article  Google Scholar 

  38. Prommersberger S, Reiser M, Beckmann J et al (2021) CARAMBA: a first-in-human clinical trial with SLAMF7 CAR T cells prepared by virus-free sleeping beauty gene transfer to treat multiple myeloma. Gene Ther 28(9):560–571. https://doi.org/10.1038/s41434-021-00254-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maude SL, Laetsch TW, Buechner J et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448

    Article  CAS  Google Scholar 

  40. Abramson JS, Palomba ML, Gordon LI et al (2020) Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396(10254):839–852

    Article  Google Scholar 

  41. Kebriaei P, Singh H, Huls MH et al (2016) Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest 126(9):3363–3376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schleef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Prommersberger, S. et al. (2022). Minicircles for CAR T Cell Production by Sleeping Beauty Transposition: A Technological Overview. In: Walther, W. (eds) Gene Therapy of Cancer. Methods in Molecular Biology, vol 2521. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2441-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2441-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2440-1

  • Online ISBN: 978-1-0716-2441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics