Skip to main content

Pangenome Analysis of Plant Transcripts and Coding Sequences

  • Protocol
  • First Online:
Plant Comparative Genomics

Abstract

The pangenome of a species is the sum of the genomes of its individuals. As coding sequences often represent only a small fraction of each genome, analyzing the pangene set can be a cost-effective strategy for plants with large genomes or highly heterozygous species. Here, we describe a step-by-step protocol to analyze plant pangene sets with the software GET_HOMOLOGUES-EST . After a short introduction, where the main concepts are illustrated, the remaining sections cover the installation and typical operations required to analyze and annotate pantranscriptomes and gene sets of plants. The recipes include instructions on how to call core and accessory genes, how to compute a presence–absence pangenome matrix, and how to identify and analyze private genes, present only in some genotypes. Downstream phylogenetic analyses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D (2020) Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet 36:132–145

    Article  CAS  PubMed  Google Scholar 

  3. Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 48:927–934

    Article  CAS  PubMed  Google Scholar 

  4. Della Coletta R, Qiu Y, Ou S, Hufford MB, Hirsch CN (2021) How the pan-genome is changing crop genomics and improvement. Genome Biol 22:3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laing C, Buchanan C, Taboada EN, Zhang Y, Kropinski A, Villegas A, Thomas JE, Gannon VP (2010) Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 11:461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920

    Article  PubMed  Google Scholar 

  7. Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A, Hickey G, Chang X, Seaman JD, Rounthwaite R, Ebler J, Rautiainen M, Garg S, Paten B, Marschall T, Sirén J, Garrison E (2020) Pangenome graphs. Annu Rev Genomics Hum Genet 21:139–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S (2016) PanTools: representation, storage and exploration of pan-genomic data. Bioinformatics 32:i487–i493

    Article  CAS  PubMed  Google Scholar 

  9. Voichek Y, Weigel D (2020) Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nat Genet 52:534–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arora S, Steuernagel B, Gaurav K et al (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37:139–143

    Article  CAS  PubMed  Google Scholar 

  11. Contreras-Moreira B, Cantalapiedra C, Garcia-Pereira M, Gordon S, Vogel J, Igartua E, Casas A, Vinuesa P (2017) Analysis of plant pan-genomes and transcriptomes with get_HOMOLOGUES-Est, a clustering solution for sequences of the same species. Front Plant Sci 8:184

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gordon SP, Contreras-Moreira B, Woods DP et al (2017) Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun 8:2184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gordon SP, Contreras-Moreira B, Levy JJ et al (2020) Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nat Commun 11:3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D (2016) Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun 7:11708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Minio A, Massonnet M, Figueroa-Balderas R, Vondras AM, Blanco-Ulate B, Cantu D (2019) Iso-seq allows genome-independent transcriptome profiling of Grape Berry development. G3 (Bethesda) 9:755–767

    Article  CAS  Google Scholar 

  16. Welch RA, Burland V, Plunkett G, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020–17024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10:149–155

    Article  CAS  PubMed  Google Scholar 

  18. Marroni F, Pinosio S, Morgante M (2014) Structural variation and genome complexity: is dispensable really dispensable? Curr Opin Plant Biol 18:31–36

    Article  CAS  PubMed  Google Scholar 

  19. Sielemann K, Weisshaar B, Pucker B (2021) Reference-based QUantification of gene dispensability (QUOD). Plant Methods 17:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Contreras-Moreira B, Vinuesa P (2013) GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vinuesa P, Contreras-Moreira B (2015) Robust identification of orthologues and paralogues for microbial pan-genomics using GET_HOMOLOGUES: a case study of pIncA/C plasmids. Methods Mol Biol 1231:203–232

    Article  CAS  PubMed  Google Scholar 

  22. Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol J 14:1099–1105

    Article  PubMed  Google Scholar 

  23. Vernikos GS (2020) A review of pangenome tools and recent studies. In: Tettelin H, Medini D (eds) The pangenome: diversity, dynamics and evolution of genomes. Springer International, Cham, pp 89–112

    Chapter  Google Scholar 

  24. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412–D419

    Article  CAS  PubMed  Google Scholar 

  25. Bateman A, Martin MJ, Orchard S et al (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489

    Article  CAS  Google Scholar 

  26. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  PubMed  Google Scholar 

  28. Willenbrock H, Hallin PF, Wassenaar TM, Ussery DW (2007) Characterization of probiotic Escherichia coli isolates with a novel pan-genome microarray. Genome Biol 8:R267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Snipen L, Almoy T, Ussery DW (2009) Microbial comparative pan-genomics using binomial mixture models. BMC Genomics 10:385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Popescu AA, Huber KT, Paradis E (2012) Ape 3.0: new tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics 28:1536–1537

    Article  CAS  PubMed  Google Scholar 

  32. Sato K, Tanaka T, Shigenobu S, Motoi Y, Wu J, Itoh T (2016) Improvement of barley genome annotations by deciphering the Haruna Nijo genome. DNA Res 23:21–28

    CAS  PubMed  Google Scholar 

  33. Vinuesa P, Ochoa-Sanchez LE, Contreras-Moreira B (2018) GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical Geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 9:771

    Article  PubMed  PubMed Central  Google Scholar 

  34. Howe KL, Contreras-Moreira B, De Silva N et al (2019) Ensembl genomes 2020-enabling non-vertebrate genomic research. Nucleic Acids Res 48:D689–D695

    Article  PubMed Central  CAS  Google Scholar 

  35. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  36. Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, Gao G (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45:W12–W16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Camargo AP, Sourkov V, Pereira GAG, Carazzolle MF (2020) RNAsamba: neural network-based assessment of the protein-coding potential of RNA sequences. NAR Genom Bioinform 2:lqz024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 1962:227–245

    Article  CAS  PubMed  Google Scholar 

  39. Jayakodi M, Padmarasu S, Haberer G et al (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588:284–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GK, Baker WJ, Wickett NJ (2019) A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-Medoids clustering. Syst Biol 68:594–606

    Article  CAS  PubMed  Google Scholar 

  41. Baker WJ, Bailey P, Barber V et al (2021) A comprehensive phylogenomic platform for exploring the angiosperm tree of life. bioRxiv

    Google Scholar 

  42. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  43. Kaas RS, Friis C, Ussery DW, Aarestrup FM (2012) Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13:577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stajich JE, Block D, Boulez K et al (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  48. Brown NP, Leroy C, Sander C (1998) MView: a web-compatible database search or multiple alignment viewer. Bioinformatics 14:380–381

    Article  CAS  PubMed  Google Scholar 

  49. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A first draft of this protocol was funded by Centro de Bioinformática y Biología Computacional de Colombia—BIOS for a workshop organized by Marco Cristancho at Manizales, Colombia, in March 2017. We also received funding from Fundación ARAID and the Spanish Ministry of Economy and Competitivity (CSIC13-4E-249, AGL2013-48756-R, AGL2016-80967-R, CGL2016-79790-P). PV acknowledges support from CONACyT Mexico (A1-S-11242) and PAPIIT-UNAM (IN206318 and IN209321). We thank Brett Chapman for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Contreras-Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Contreras-Moreira, B., del Río, Á.R., Cantalapiedra, C.P., Sancho, R., Vinuesa, P. (2022). Pangenome Analysis of Plant Transcripts and Coding Sequences. In: Pereira-Santana, A., Gamboa-Tuz, S.D., Rodríguez-Zapata, L.C. (eds) Plant Comparative Genomics. Methods in Molecular Biology, vol 2512. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2429-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2429-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2428-9

  • Online ISBN: 978-1-0716-2429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics