Skip to main content

Detecting MicroRNAs in Plant Genomes with miRkwood

  • Protocol
  • First Online:
Plant Comparative Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2512))

Abstract

We present miRkwood, a comprehensive software tool developed to identify microRNAs and their precursor in plant genomes, with or without small-RNA-seq sequencing data. We describe how to install the software, how to set up and run it, and how to explore and analyse the results: genomic annotations, secondary structure of the precursor, alignments, reads distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guigon I, Legrand S, Berthelot J-F, Bini S, Lanselle D, Benmounah M, Touzet H (2019) miRkwood: a tool for the reliable identification of microRNAs in plant genomes. BMC Genomics 20:532. https://doi.org/10.1186/s12864-019-5913-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. https://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html

  3. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26. https://doi.org/10.1186/1748-7188-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leclercq M, Diallo AB, Blanchette M (2013) Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res 41:7200–7211. https://doi.org/10.1093/nar/gkt466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Darty K, Denise A, Ponty Y (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974–1975. https://doi.org/10.1093/bioinformatics/btp250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  7. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11:Unit-11.7. https://doi.org/10.1002/0471250953.bi1107s32

    Article  PubMed  Google Scholar 

  9. Turner DH, Mathews DH (2010) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38:D280–D282. https://doi.org/10.1093/nar/gkp892

    Article  CAS  PubMed  Google Scholar 

  10. Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20:2911–2917. https://doi.org/10.1093/bioinformatics/bth374

    Article  CAS  PubMed  Google Scholar 

  11. Polydore S, Axtell MJ (2018) Analysis of RDR1/RDR2/RDR6-independent small RNAs in Arabidopsis thaliana improves MIRNA annotations and reveals unexplained types of short interfering RNA loci. Plant J Cell Mol Biol 94:1051–1063. https://doi.org/10.1111/tpj.13919

    Article  CAS  Google Scholar 

  12. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758. https://doi.org/10.1073/pnas.0403115101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  14. Chan PP, Lowe TM (2019) tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 1962:1–14. https://doi.org/10.1007/978-1-4939-9173-0_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Touzet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Legrand, S., Guigon, I., Touzet, H. (2022). Detecting MicroRNAs in Plant Genomes with miRkwood. In: Pereira-Santana, A., Gamboa-Tuz, S.D., Rodríguez-Zapata, L.C. (eds) Plant Comparative Genomics. Methods in Molecular Biology, vol 2512. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2429-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2429-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2428-9

  • Online ISBN: 978-1-0716-2429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics