Skip to main content

Searching for Homologous Genes Using Daisychain

  • Protocol
  • First Online:
Plant Comparative Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2512))

  • 1062 Accesses

Abstract

Genome assemblies have become a standard tool of genomics research and are relatively inexpensive to produce due to falling sequencing costs. For many species, there are now several reference-grade genome assemblies. However, comparing different assemblies or the same or related individuals is not an easy task, especially with different levels of quality of assembly and annotation. Tools are needed to visualise related genes with different IDs across genome assemblies. Here, we present a workflow to search and visualise related genes using Daisychain, a web-based tool aimed at researchers who wish to compare genes between assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  Google Scholar 

  2. Kaul S et al (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  CAS  Google Scholar 

  3. Venter JC et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  Google Scholar 

  4. Chalhoub B et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953

    Article  CAS  Google Scholar 

  5. Bayer PE et al (2017) Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J 15(12):1602–1610

    Article  CAS  Google Scholar 

  6. Sun F et al (2017) The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J 92(3):452–468

    Article  CAS  Google Scholar 

  7. Song JM, Guang Z, Hu J et al (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45

    Article  CAS  Google Scholar 

  8. Lee H, Chawla HS, Obermeier C et al (2020) Chromosome-scale assembly of winter oilseed rape Brassica napus. Front Plant Sci 11:496

    Article  Google Scholar 

  9. Hurgobin B et al (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J 16(7):1265–1274

    Article  CAS  Google Scholar 

  10. Zimin AV et al (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6(11):gix097

    Article  Google Scholar 

  11. International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191

    Article  Google Scholar 

  12. Walkowiak S, Gao L, Monat C et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283

    Article  CAS  Google Scholar 

  13. Montenegro JD et al (2017) The pangenome of hexaploid bread wheat. Plant J 90(5):1007–1013

    Article  CAS  Google Scholar 

  14. Liu Y et al (2020) Pan-genome of wild and cultivated soybeans. Cell 182(1):162–176.e13

    Article  CAS  Google Scholar 

  15. Torkamaneh D, Lemay MA, Belzile F (2021) The pan-genome of the cultivated soybean (PanSoy) reveals an extraordinarily conserved gene content. Plant Biotechnol J 19:1852–1862

    Article  CAS  Google Scholar 

  16. Bayer PE et al (2021) Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. Plant Genome 2021:e20109

    Google Scholar 

  17. Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  Google Scholar 

  18. Shen Y et al (2018) De novo assembly of a Chinese soybean genome. Sci China Life Sci 61(8):871–884

    Article  CAS  Google Scholar 

  19. Valliyodan B et al (2019) Construction and comparison of three reference-quality genome assemblies for soybean. Plant J 100(5):1066–1082

    Article  CAS  Google Scholar 

  20. Chu JSC et al (2021) Eight soybean reference genome resources from varying latitudes and agronomic traits. Sci Data 8(1):1–8

    Article  Google Scholar 

  21. Danilevicz MF et al (2020) Plant pangenomics: approaches, applications and advancements. Curr Opin Plant Biol 54:18–25

    Article  CAS  Google Scholar 

  22. Bayer PE et al (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920

    Article  Google Scholar 

  23. Golicz AA et al (2020) Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet 36(2):132–145

    Article  CAS  Google Scholar 

  24. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189

    Article  CAS  Google Scholar 

  25. Contreras-Moreira B et al (2017) Analysis of plant pan-genomes and transcriptomes with GET_HOMOLOGUES-EST, a clustering solution for sequences of the same species. Front Plant Sci 8:184

    Article  Google Scholar 

  26. Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20(1):1–14

    Article  Google Scholar 

  27. Hassani-Pak K et al (2021) KnetMiner: a comprehensive approach for supporting evidence-based gene discovery and complex trait analysis across species. Plant Biotechnol J 19(8):1670–1678

    Article  Google Scholar 

  28. Camacho C et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bayer, P.E., Edwards, D. (2022). Searching for Homologous Genes Using Daisychain. In: Pereira-Santana, A., Gamboa-Tuz, S.D., Rodríguez-Zapata, L.C. (eds) Plant Comparative Genomics. Methods in Molecular Biology, vol 2512. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2429-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2429-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2428-9

  • Online ISBN: 978-1-0716-2429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics